Index

a
absorption, distribution, metabolism, and excretion (ADME), 9, 141
candidate molecules, properties of, 19
planning and executing, FIH Trial, 169
absorption mechanisms, drug formulations
direct to GI tract, 50–51
distribution, 49–50
factors affecting absorption, 56
local effects, 49
metabolism, 50
peroral (PO) absorption, 51–55
of weak acids and bases, 56–59
absorption rate constant (K_a), 54
active pharmaceutical ingredient (API), 40
AUC exposures, 147
CMO selection, timing for, 120
high dose toxicology studies, 140
particle size effects, 192
principles of, 42
taste of, 194
active transport, 54
amorphous solid dispersion (ASD), 25
formulations compositions of, 156
glass transition temperature (T_g), 150
HPMCP, 159
HTS, solubility FaSSIF of, 152
for improving oral absorption, 154–159
mDSC, 150
MiMBA model, 154
ProCepT micro-spray dryer, 155
for resolving complex polymorphism challenges, 151–153
spring and parachute effect, 150, 151
ssNMR spectroscopy, 150
amorphous solid dispersion formulations compositions of, 156
glass transition temperature (T_g), 150
HPMCP, 159
HTS, solubility FaSSIF of, 152
amorphous solid dispersion formulations (cont’d)
for improving oral absorption, 154–159
mDSC, 150
MiMBA model, 154
ProCepT micro-spray dryer, 155
for resolving complex polymorphism challenges, 151–153
spring and parachute effect, 150, 151
ssNMR spectroscopy, 150
analytical development
analytical method requirements, 206–207
validation, 207–209
drug product specification, 209–210
stability, 211–213
initial drug product batch analysis, 211
phase formulation, 205–206
release testing, 211
API-in-bottle, 194–196, 200
API-in-capsule, 196–198, 200
API-sparing method, 190
apparent permeability (P_{app}), 16
area under the curve (AUC), 93, 147

b
Bayesian models, 181
bench-top process, 26
biopharmaceutics classification system (BCS)
biowaiver, 204
class I, 197, 204
class II, 190, 202
class III, 197, 204
class IV, 190, 230
blood–brain barrier, 15, 62
blood concentration–time curve, 59
capillary electrophoresis (CE), 13
Center for Drug Evaluation and Research (CDER), 41
certificate of analysis (CoA), 206, 211
certificate of testing (CoT), 98
chemical–diet admixtures, 78
chemistry, manufacturing, and controls (CMC), 167
cleaning verification testing, 205
clinical and nonclinical formulations, novel excipient, 111–112
Investigator’s Brochure (IB), 171, 216
clinical development candidate progressing into, 90
significant investment, 139
clinical studies in vitro and ADME properties, 10
clinical trial authorization (CTA), 167
clinical trials
DART studies, 95
FDA and ICH, 91
first-in-human (FIH), 166
GLP studies, 90
human health risk assessment for, 96
materials, on-site manufactured, 187–189
NCE, 94
new chemical entity (NCE), 167
phase I, 102
phase III, 95
and registration, typical safety studies, 92
common technical document (CTD), 217–219
compendial methods, 226
compounds characterization
acid–base dissociation constant (pKₐ), 13
lipophilicity of, 13–15
permeability, 15–17
preformulation, 10–11
solubility
 equilibrium/thermodynamic solubility, 12
kinetic solubility assays, 11–12
pseudo-kinetic solubility, 13
conductor screening model for real solvents (COSMO-RS), 20
contract manufacturing organizations (CMOs)
outsourcing
 considerations for, 117–119
reasons for, 116–117
partnership considerations, 6
 selection, 123–134
 pre-CMO background information/preparation, 120–123
 steps, 135
 timing for, 120
contract research organizations (CROs), 116
ContraSol™, 27, 30
convective absorption, 55
cyclodextrins, 21
cytotoxic agents, 177
d
DART. see developmental and reproductive toxicology (DART)
Index

drug molecule
physicochemical properties of, 141
solubility of, 150
drug product (DP)
analytical development activities, 167
batch formula, 225
CoA, 211
composition, 224
CTD, 219
FIH/phase I studies, 209–210
ICH Guideline Q6A and Q3B (R2), 209
IND/CTA, 211
information, 223–229
in‐house manufacturing formulation, 190
product life cycle, 207
reevaluation date (RED), 205
specification, 205, 209–210
stability, 211–213
very stable formulation, 211
drug’s beneficial effects, 62
drug substance (DS)
CTD, 218
information, 220–223
stability protocol, 223
dry‐filled capsule (DFC), 197, 200
dynamic vapor sorption (DVS), 122

WOCBP in, 170
emulsion template structure, 30

f
facilitated diffusion, 54
fasted state simulated intestinal fluid (FaSSIF), 144, 190
FASTLOCK filler, 199
Fibonacci design, 173–174
first‐in‐human (FIH)
clinical trials
analytical development, 205–213
formulation development, 183–204
planning and executing, 167–183
regulatory submission, preparation of, 213–231
single dose (SD) studies, 193
first‐pass effect, 55, 60, 61
fit-for-purpose (FFP)
analytical activities and clinical manufacture, 205–206
analytical method, 18
formulation strategy, 184
Food and Drug Administration (FDA), 41
approval 505(b)(2) process, 2
BCS, 3
eyearly phase clinical trials
FDA approval, 184
high failure rate of, 184
objectives and proof-of-concept studies, 184, 186
product development, 206
resource investment and trial duration, 177

emulsion template structure, 30
phase I clinical trials, 1–2
products regulated, clinical testing of, 97
formulation development
commercializable formulation, bridging studies to, 203–204
dry-filled capsule (DFC)/tablet, 197
fit-for-purpose vs commercial approach, 184–187
on-site manufactured clinical trial materials, 187–189
peristaltic pump/calibrated pipettes, 193
solubility
conventional formulations, 190
enabled formulations, 190–191
strategy, 202
trial design considerations, 191–193
types of
API-in-bottle, 194–196
API-in-capsule, 196–198
formulated capsules and tablets, 198–202
ready-to-use solutions and suspensions, 193–194
freeze-drying method, 27
GastroPlus™, 12, 22
good laboratory practice (GLP)
dose selection, 96–99
FDA guidelines, 97, 98
IND application-enabling safety studies, 90
NCE approaches, 90
nonclinical safety studies, formulation selection for, 90–96
safety studies
acoustic mixing process, 147
micron-size, 147
test article requirements, 96–99
toxicology studies
AUC vs dose plot, 149
general requirements for, 99

H
Henderson–Hasselbalch equation, 57
hepatic portal system, 55
high dose toxicology studies
ADME profile, 141
amorphous solid dispersion formulations, 149–159
API, 140
low dose pharmacokinetic, 141
MFD, 142
MTD, 140, 141
nanosuspension formulations, 142–149
NOAEL, 140
high-throughput screening (HTS), 9, 40, 152
HPLC retention times, 13
human-taste test panel, 193
hydroxypropyl-β-cyclodextrin (HP-β-CD), 21
hydroxypropyl β-cyclodextrin (HP-β-CD), 21
hypromellose acetate succinate (HPMCAS), 151

GastroPlus™, 12, 22

H
Henderson–Hasselbalch equation, 57
hepatic portal system, 55
high dose toxicology studies
ADME profile, 141
amorphous solid dispersion formulations, 149–159
API, 140
low dose pharmacokinetic, 141
MFD, 142
MTD, 140, 141
nanosuspension formulations, 142–149
NOAEL, 140
high-throughput screening (HTS), 9, 40, 152
HPLC retention times, 13
human-taste test panel, 193
hydroxypropyl-β-cyclodextrin (HP-β-CD), 21
hydroxypropyl β-cyclodextrin (HP-β-CD), 21
hypromellose acetate succinate (HPMCAS), 151

h
Henderson–Hasselbalch equation, 57
hepatic portal system, 55
high dose toxicology studies
ADME profile, 141
amorphous solid dispersion formulations, 149–159
API, 140
low dose pharmacokinetic, 141
MFD, 142
MTD, 140, 141
nanosuspension formulations, 142–149
NOAEL, 140
high-throughput screening (HTS), 9, 40, 152
HPLC retention times, 13
human-taste test panel, 193
hydroxypropyl-β-cyclodextrin (HP-β-CD), 21
hypropemlose acetate succinate (HPMCAS), 151
ICH. see International Conference on Harmonization (ICH)
independent research ethics committee (IEC), 167
in‐house manufacturing approach, 189
institutional review board (IRB), 167–169
International Conference on Harmonization (ICH), 91
Good Clinical Practice E6 (R1) Guidance, 167, 169
Guideline Q2(R1), 207
Guideline Q6A, 209
nonclinical safety studies, M3 (R2) guidelines for, 141
Q3B (R2), 209
Q3B Guideline on Impurities, 228
International Pharmaceutical Excipient Council (IPEC), 41, 111
investigational medicinal product (IMP), 166
Investigational Medicinal Product Dossier (IMPD), 214
Investigational New Drug (IND), 167
application‐enabling safety studies, 90
enabling studies, 92
genotoxicity studies, 94
in vitro–in vivo correlation (IVIVC), 230
in vitro permeation studies
apparent permeability (P_app), 16
cell monolayers, 16
in vivo safety studies. see pilot toxicology studies
ion trapping, 57, 58
IOTA NanoSolutions™, 27
kinetic solubility assays
amorphous/metastable solid form, precipitation of, 12
HTS process, 11
UV/nephelometry, 11
lead optimization
formulation, principles of, 49
multidisciplinary approach to, 43
lead selection stage
absorption mechanisms, 49–59
administration, potential routes of, 42
bioavailability, 45
and thresholds, 59–61
drug products, essential components of, 41
magic bullet, 40–41
phase I formulations, evolution of, 43
physicochemical properties, 54
preclinical species, 45–49
preformulation, 44
limit of quantitation (LOQ), 207
Lineweaver–Burk plot, 55
lipid mixture. see self‐emulsifying drug delivery systems (SEDDS)
Lipinski’s rule of five (RO5), 44
lipophilicity, 9
low dose pharmacokinetic (PK) studies, 141
magic bullet, 40–41
maximum absorbable dose (MAD), 30
maximum feasible dose (MFD), 96, 97, 142
maximum tolerated dose (MTD), 94, 140
Medicines and Healthcare products Regulatory Agency (MHRA), 167
Michaelis–Menten kinetics, 55
microscopic mass balance approach (MiMBA), 154, 156
modulated differential scanning calorimetry (mDSC), 150
molecular weight, 11
multiple ascending dose (MAD) studies, 93, 169
n nasosuspension approach, 149
nasosuspension formulations crystalline, stabilizer for, 145
drug discovery, 149
freeze-thaw cycling, 147
homogeneous process, 144
maximum dose and systemic drug exposure, 144–149
milky colloidal suspensions, 142
milling process, 143
Ostwald ripening, 143
particle size, 143
new chemical entity (NCE)
carcinogenicity studies, 96
general toxicology studies, 91–94
nonclinical safety studies, 97
nonclinical testing paradigm for, 90
of novel excipients, 111–112
route map, 168
safety assessment of, 90
toxicological profile of, 96
nitrogen–hydrogen bonds, 44
nonalcoholic steatohepatitis (NASH), 101
nonclinical and clinical drug formulation, 40
pharmaceutical safety assessment, 64
nonclinical safety studies, GLP carcinogenicity, 96
DART studies, 95
FDA, 91
formulation requirements for, 90
formulation tolerability, 106–110
general toxicology studies, 91–94
genotoxicity studies, 94
phase-appropriate formulation strategy, 99–104
safety pharmacology studies, 94–95
test article administration, methods of, 104–106
noncompendial methods, 226
non-oncology FIH/SAD studies, 192
no observable effect level (NOEL), 17
no observed adverse effect level (NOAEL), 17, 93, 140
Noyes–Whitney equation, 142
o octanol–water shake flask method, 13
on-site formulations (OSF), 187
conventional formulations, 190
in-use stability, 212
oral administration techniques calculating material requirements, 81
route comparisons and contrasts, 80–81
volume limitations, 80
oral biopharmaceutics (OrBiTo) project, 16
oral drug formulation development
lead selection stage, 40–61
oral administration
techniques, 77–81
toxicology studies, 61–77
oral solutions, formulation
additives, effects of, 47
osmotic pressure, sugar’s
effect on, 47
out-of-specification (OOS)
test, 126
oxygen–hydrogen bonds, 44

parachute effect, 150, 151
particle size effect, 147, 148
partition coefficient (log P), 10, 11, 13, 15
lipid–water, 53, 56
octanol–water, 44, 54
passive absorption, 54
perinatal–postnatal period, 95
permeability screening
blood–brain barrier, 15
Caco-2 cell monolayers, 16
GIT, 15, 31
pharmacodynamic (PD)
study, 17, 39
comparability, 65
pharmacokinetics (PK) study, 17, 100
comparability, 65
pharmacological/toxic effect, 59
phase-appropriate formulation
strategy
NCE, safety of, 99
nonclinical
NASH, 101
options, 102–104
pharmacokinetic studies, 100
in vivo efficacy studies, 101
qualified GLP formulations, 100
in vivo safety studies, 101
phase I
analytical method validation,
207–209
FFP formulations, 215
FIH clinical trials, 166
formulations, evolution of, 43
multiple ascending dose (MAD), 93
single ascending dose (SAD), 93
solids dosage forms, 210
validation tests, 207–208
phase II
FIH clinical trials, 166
proof-of-concept study, 93
validation tests, 207–208
phase III
chronic dosing in, 93
clinical trials, 95, 102
for FDA, 203
phototoxic signals, 96
pilot-to-commercial scale, 198
pilot toxicology studies
GLP DART, 95
“GLP-friendly” formulation
for, 101
lead optimization, 100
pinocytosis, 54–55
pivotal toxicity studies, 64
planning and executing, FIH Trial
active control trials, 197
ADME profile, 169
clinical trial completion, 183
NCE selection, 168
outsourcing activities, 167
sample acquisition and data
analysis, 182–183
site and investigator selection,
170–171
study population, 169–170
trial design
 blinding, 174–175
 dose increment and escalation strategies, 173–174
 initial dose determination, 172
 MAD studies, 177
 multi-part flexible trial designs, 177
 oncology-specific, 177–181
 SAD studies, 175–176
polarized light microscopy (PLM), 13
polar surface area (PSA), 11, 16
preclinical development, 4
 PK/PD studies of, 17–31
 simplicity and bioavailability, 43
 stage of, 22
preclinical in vivo studies, IV
preclinical formulation for, 20
preferred-provider model, 117
ProCepT micro-spray dryer, 155
product value enhancement (PVE), 230
pseudo-kinetic solubility, 13, 14
quality by design (QbD) principles, 207
quantitation limit (LOQ), 208
quantitative estimate of drug-likeness (QED), 10
RapidFACT program, 230
regulatory submission information
 clinical protocols, 229–231
 CMC section, content of, 220–229
 CTA submission, 213
 CTD, 217–219
 flexible formulation design space, 229–231
IMPD and CMC, 214–217
IND/CTA, 213–214
safety factor, 93
self-emulsifying drug delivery systems (SMEDDS), 103, 191
semiempirical equations, 11
short repeat-dose studies, 94
Simcyp, 12, 22
simulated gastric fluid (SGF), 190
single dose (SD)
 FIH studies, 193
 pharmacokinetics/tolerability studies, 90
solid state nuclear magnetic resonance (ssNMR) spectroscopy, 150
Solutol HS 15 (macrogol 15 hydroxystearate), 21
solvent evaporation method, 25
spray-drying process, 25
spring effect, 150, 151
structure-activity relationships (SAR), 49
test material, physical-chemical properties of, 82
therapeutic antibodies, 91
therapeutic area (TA)
 GLP toxicology studies, 98, 99
 stability of, 98
 titration (potentiometric/UV spectral detection), 13
 top-down milling approach, 143
toxicokinetic/dose range finding studies, 17
United States Pharmacopeia (USP), 188
v
van der Waals forces, 150

w
water sorption/desorption data, 121

x
wet-bead milling processes, 26, 28

Xcelodose® system, 188, 195, 197, 198