1

Introduction

Elizabeth Kwong

Kwong Eureka Solutions, Montreal, Quebec, Canada

1.1 Overcoming Challenges in Big Pharma and Evolution of Start-Up Companies,
1.2 Overview of Activities Involved in Current Drug Discovery and Development,
1.3 Value of the Right Formulation at the Right Time,

References, 6

1.1 Overcoming Challenges in Big Pharma and Evolution of Start-Up Companies

The discovery and development of new drugs is a very complex process. No matter how you implement Lean Six Sigma Black Belt or in-depth data mining into the process, cost and success rate of commercializing drugs had not improved. It was estimated that it takes at least 10 years for a drug to make the journey from discovery to consumer at an average cost of $5 billion (Herper, 2013). Another study conducted by BIO and BioMedTracker (Hay et al., 2011), which collects data on drugs in development, had reviewed more than 4000 drugs from small and large companies that indicated that overall success rate for drugs moving from early stage phase I clinical trials to FDA approval is about 1 in 10, down from 1 in 6 seen in reports earlier. Despite increasing investments in research and development, the number of new drug approvals has not increased, while the attrition rate of new drug candidates has increased.

Recent publication in Fortune entitled “Big Pharma Innovation in Small Places” (Alsever, 2016) quoted several big pharma executives as to the current nature of big pharmaceutical companies where the focus of R&D is diminished to sorting out changes in the company and reprioritizing programs. Furthermore, with investor money flooding in and shift of drug pipelines from internal R&D to start-ups licensing opportunities, big pharma is acquiring
small companies at faster pace than before. Small start-ups are now becoming the “new” innovative machines, which offer the high risk–high reward paradigm. According to surveys, last year, 64% of the approved phase I studies originated at a smaller start-ups.

1.2 Overview of Activities Involved in Current Drug Discovery and Development

There had been many surveys that revealed the cause of attrition of molecule in clinical development through the years. The major factors for discontinuation of clinical candidates are lack of efficacy (~30%) and toxicity (~30%). Kola & Landis (2004) further revealed that a 10% drop in attrition in 2000 was partly due to advancement in formulation technologies. Furthermore with increase in molecular obesity in drug candidates in recent years, majority of new drug development is poorly water soluble (Hann, 2011). About 40% of drugs with market approval and nearly 70–90% of molecule in discovery are poorly water soluble, which can lead to low bioavailability with conventional formulations (Kalepu & Nekkanti, 2015). With the introduction of various drug delivery technologies, numerous drugs associated with poor solubility and low bioavailability have been formulated into successful drug products. In fact, recently an increase in NDA file under 505(b)(2) is gaining more importance. New dosage forms with improved solubility and enhanced bioavailability such as prodrugs/active metabolite of drug and reformulation of poorly absorbed drugs using new technologies are turning into lucrative business. According to the Q&A with Ken Phelps, president of Camargo Pharmaceutical Services, which provides services for drug development for 505(b)(2) applications, approximately 20% of new drug approved in 2006 is through 505(b)(2) process. By 2008 more than half of new drug approval was based on 505(b)(2) process (Phelps, 2013).

Poor solubility of development candidates can limit drug concentration at the biological target site, which can lead to loss of therapeutic effect. Increasing the dose can overcome this lack of therapeutic effect but can lead to high variability in absorption, which can be detrimental to the safety and efficacy profile. For these reasons, solubility-enhancement technologies are being used increasingly in the pharmaceutical field. A formulation scientist’s approach to solubility enhancement of a poorly water-soluble drug can vary. Often, physicochemical characterization, solid-state modifications, nonconventional formulation technologies, and enabling formulations are often utilized. There are numerous literature resources available to provide guidance toward formulation development from discovery to development of development candidates; however, a single reference where formulation approaches are described in each stage is lacking. This book describes and explains key factors
that will help determine the types of formulation needed at the different stages of discovery. The considerations of limited amount of API in early stages to the use of the formulation to determine key efficacious or toxicological end point that will not interfere with readouts will be discussed. The formulation selection stage-dependent approach will be detailed up to the planning for the regulatory filing. The interplay of drug metabolism, absorption, and physicochemical properties of the active will be laid out to help understand when a formulation can be improved and when a different lead candidate should be selected. Current formulation approaches based on the biopharmaceutics classification system (BCS) of the lead will be explained. The book will also focus on the relationships between various disciplines like physical chemistry, analytical chemistry, biology, DMPK, toxicology, and medicinal chemistry in determining the appropriate formulation to deliver the candidate in different forms. API sparing approaches including fit for purpose formulation to get candidates into development will also be covered in the book. Each stage of formulation (see Table 1.1) development has its goals, degree of complexity, and increasing availability of information, which ultimately leads to candidate that will have properties that can be administered in humans.

1.3 Value of the Right Formulation at the Right Time

Many of the discovery challenges are due to failure to properly identify formulations that are translatable from preclinical to clinical due to lack of effective predictions of therapeutic and toxicological responses in the preclinical stages. Moreover, efforts spent to integrate the formulation scientists in the early discovery that leads to the lead candidate selection had been disappointing. Most of the time, the lack of understanding of the interplay of the physiological system and physicochemical properties of the molecule to the drug delivery system contributed to the failure to integrate the right expertise at the right time, which leads to poor clinical successes. The lack of collaboration and proper integration between the formulation and discovery scientists is the root cause of most of the failure in the clinic. Lastly, the understanding of regulatory requirements for formulations also can add to the burden of the timeline and cost of bringing a drug candidate forward.

Although discovery starts off with the structure-based drug design, a better design of drug should be an understanding of how the biological effect is influenced by physicochemical properties, PK of the drug, and pharmaceutical delivery system. Optimization of the API via salt formation or co-crystal and physical changes such as particle size reduction through milling or formation of amorphous dispersions are often employed to improve oral bioavailability of insoluble compounds. These approaches can be applied even at the lead
identification if a candidate is deemed to show some potential. Various available formulations are discussed for early discovery in Chapter 2. This chapter will explain which formulation will be suitable at what stage and what features of the drug might suggest one technology over another. Chapters 3 and 4 deal with the different toxicology studies in relations to what formulation will be suitable. Following the development of suitable formulation to deliver required exposure in the early stage of discovery, this will then provide adequate safety assessment and risk of the candidate before proceeding to the more expensive

Table 1.1 Activity definition from discovery to preclinical development.

<table>
<thead>
<tr>
<th>Early discovery (lead ID/target validation)</th>
<th>Lead optimization/candidate nomination</th>
<th>Preclinical development to phase I</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Un-optimized phase of the molecules</td>
<td>• More API available</td>
<td>• GLP tox study</td>
</tr>
<tr>
<td>• Limited compound supplies</td>
<td>• Chronic efficacy/biomarker studies</td>
<td>• Polymorph/salt screen</td>
</tr>
<tr>
<td>• HTS-short timeline and high number of leads being screened</td>
<td>• Initiate physicochemical characterization</td>
<td>• Scale-up of API</td>
</tr>
<tr>
<td>• Pharmacology studies (target engagement, efficacy studies)</td>
<td>• Assess developability of the candidate</td>
<td></td>
</tr>
<tr>
<td>• In silico tox screen</td>
<td>• Synthetic scale-up (~1–10 g)</td>
<td></td>
</tr>
<tr>
<td>• In vitro metabolism</td>
<td>• Potential dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dose range finding (DRF) studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ADME</td>
<td></td>
</tr>
</tbody>
</table>

- Standardized solutions for *in vitro* HTS and *in vivo* PK screen
- Dose range finding to identify exposure multiples
- Vehicle identified and dose range identified for GLP tox
 - Repeat preparation of vehicle using optimized API
 - Characterize physical properties of API in vehicle
 - Meet GLP requirements
- No vehicle screen
- *In vitro* metabolism
- Resort to vehicle screen decision tree
 - Goal of formulation selection are:
 - Vehicles do not have any biological adverse effect
 - Achieve exposure at the highest toxicological dose
 - Can reach up to 2 g/kg
 - Key is to identify adverse effects
 - Vehicle identified and dose range identified for GLP tox
- Usually contains DMSO or other standardized cosolvent vehicle (such as PEG/EtOH), low dose PK with IV/oral for %F
- Pharmacology studies—needed a sustained plasma level use of Alzet Osmotic pumps
- PK–PD studies—use solution at low dose and suspension at high dose to assess relationship
- CTM development—based on physical properties, such as flow, stability, particle size, and BCS, bioavailability

clinical trials. Following this stage, Chapter 7 will cover the formulation technologies that will be scalable to support the first clinical trial study.

Selecting a suitable formulation for your drug candidate can be complicated. Publications on formulation options for poorly soluble drugs are widespread. Each publication would have its approaches with decision trees and had shown proof of success that suits the specific pharmaceutical support system. In other words, taking this approach to another company with a different support function may not work. In my years of experience, to properly select the “right” formulation for a specific compound will still need input from a formulation scientist. This will be someone who poses the breadth of knowledge that can span from understanding of the physiological environment, pharmacology, and physicochemical properties of the molecule that will be intended for development. First to note here is the dose that will be required to be formulated, since solubilization techniques will have their limitation if the doses needed will be high. For example, at the lead optimization stage where safety of the candidate will need to be assessed, high doses are usually expected, and no means of solubilization can be possible that uses excipients that are inert unless your candidate is truly water soluble, which is very rare. It is also worth noting that the term “solubilization” is for the candidate to be soluble in the vehicle or mixture, and this does not include the fact that once this formulation is dosed, solubilization in the physiological environment may pose another hurdle that still can limit the absorption of the drug. This then leads to the question of what is the solubility of this molecule in the physiological milieu? One has to consider the micro-environment that may not be visible and static as we would envision during an in vitro test. For example, size reduction technology, which is also one of the solubilization techniques, is used to improve bioavailability. This technology is easy to achieve but may not be applicable to a large proportion of poorly soluble compounds. Evaluation of agglomeration potential of the molecule, understanding of the interplay of the excipients with the physical environment, and stability of the particle, molecule, and crystalline form are required. Another tool is the use of lipid technologies, which uses lipids as primary ingredient to deliver the water insoluble molecule. Lipid formulations are more complex and can produce micelles and microemulsions and will need a formulator to understand how each component of the mixture can ensure the target performance of the molecule from the in vitro to the in vivo environment. Most of the ingredient may be limited by the amount that can be administered in a preclinical study. At the same time, getting the number of additives together can result in a very viscous vehicle that may itself produce some challenge in a multiple day dosing during a toxicology study. Furthermore, use of such formulation for clinical supplies poses other challenges including use of soft gelatin capsule that can be in an appropriate size for dosing in patients and can be costly.

An important strategy to consider for your formulation selection is simplicity. Try to understand the criticality of solubilization to permeability/metabolism.
In some cases where the molecule is poorly soluble, the oral absorption is still acceptable when given a suspension where the only solubilization was the use of a low concentration of surfactant as a wetting agent aid. This approach can provide a PK profile that will have less C_{max} to C_{trough} ratio and can mitigate some of the adverse effects related to high plasma levels. At the same time this may provide sustain release if solubilization of the molecule is slow and the absorption window is wide. To manage the reproducibility of the PK profile, it will be important to properly characterize the suspension including the form and particle size of the compound in suspension. Such formulation approach in preclinical can also translate into a simple blend in a capsule that can be used in clinical formulation. On the other hand, if the molecule is being metabolized or transported at specific dose or species, formulation may not provide the solution even with the help of permeability enhancers. This is part of the reason why optimal drug-like properties are significant in drug discovery to minimize the complexity of downstream activities.

This book will be the first in detailing the formulation approaches by stage of discovery to early development to help scientists of different disciplines. Practical challenges and solutions will be discussed. The content of the book will guide the proper use of resources to lead scientists to generate the proper database that can help in quick decision making. The target audience for the book will be drug discovery scientists including medicinal chemists, leaders in pharmaceutical industry (big pharma or start-up companies), and academics who are interested in bringing a potential drug candidate to the clinic.

Partnership considerations with contract manufacturing organization (CMO) will also be described and shared to increase the probability of meeting tight timelines and to ensure the proper selection of formulation to support an early stage development and how this can impact the late stage development of the drug candidate. Introduction of current formulation approaches including enabling formulations such as solid dispersions used in the industry will widen partnership with emerging innovators and sponsors, making it possible for the otherwise difficult drug candidate to be studied in the clinic.

References

