INDEX

Page references followed by f denote figures. Page references followed by t denote tables.

AAP. See Average annual precipitation
AB_OPT. See Adjoint-Based OPTimizer
ACCESS 1.3, 306
ACF. See Autocorrelation function
Active Microwave Instrument-Windscat (AMI-WS), 354
Actual evapotranspiration (AET), 468, 472
Adaptive neuro-fuzzy interference system (ANFIS), 256, 263–65, 264f, 268, 270f
Adjoint-Based OPTimizer (AB_OPT), 322
Advanced land observing satellite (ALOS), 118, 119, 119f
Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), 3
for aquifer depletion, 354
B and, 309
CABLE and, 309, 310, 310f, 314, 315
CMORPH and, 44
DAV and, 216, 218, 218f, 220f, 221f, 225
EOS and, 331
GPROF and, 10, 12
HA93 and, 15
LSM and, 306
NASA Giovanni and, 333
PMW and, 441–42
for river discharge, 319, 322–23, 325–26, 325f, 326f
RMSE for, 325, 327, 327f
RNC database and, 21
SCA and, 278
SMAP and, 247
for soil moisture, 277–302, 319, 322–23, 325–26, 325f, 326f
bivariate correlation for, 283–86, 283f, 284f, 285f
correction, 282–83
Micronet for, 287–300, 288f, 289f, 290t, 291t–292t, 293t,
294f, 295f, 296f, 297f, 298f, 299f, 300f, 301f
NLDAS for, 278–83
soil evaporation efficiency model and, 282, 287f
soil temperature disaggregation and, 280–82
soil variables mapping and, 286–87
for surface temperature, 439
SWE and, 228
for ungauged basins, 440
Advanced Scatterometer (ASCAT)
for aquifer depletion, 354
for river discharge, 319, 323, 326–27, 326f
RMSE for, 327, 327f
SMAP and, 247
for soil moisture, 319, 323, 326–27, 326f
Advanced Technology Microwave Sounder (ATMS), 176
Advanced TOVAS (ATOVAS), 512
Advanced Very High Resolution Radiometers (AVHRR)
IR and
LEO and, 47, 47f, 49–50, 54
NOAA and, 48, 48f
PDF and, 48
PMW and, 48, 49–50, 49f, 51f, 54
LEO and, PMW and, 55
Suomi National Polar-Orbiting Partnership and, 176
SWE and, 166, 167f
ADWAR. See Arizona Department of Water Resources
AET. See Actual evapotranspiration
Agricultural Region of Alberta Soil Inventory Database (AGRASID), 259
Agricultural Research Service (ARS), 452
AIC. See Akaike information criterion
Airborne Synthetic Aperture Radar (AirSAR), 388f
accuracy analysis for, 390, 391
classification, 389–90
GPS and, 386–88
processing, 388–89
results for, 390–93
for WISCLAND, 386
Airborne Visible and Infrared Imaging Spectroradiometer (AVIRIS), 164–65
AirMOSS, 494
AIRS, 338, 342f, 512
AirSAR. See Airborne Synthetic Aperture Radar
Akaike information criterion (AIC), 261
Alaska SAR Facility (ASF), 119
ALOS. See Advanced land observing satellite
AMC. See Antecedent moisture condition
AMI-WS. See Active Microwave Instrument-Windscat
AMSR-E. See Advanced Microwave Scanning Radiometer-Earth Observing System
ANFIS. See Adaptive neuro-fuzzy interference system
ANN. See Artificial neural network
Antecedent moisture condition (AMC), 467, 468
Antecedent precipitation index (API), 324
Antenna temperature, 4
APAS. See Arabian Peninsula Aquifer System
APHRODITE. See Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources
API. See Antecedent precipitation index
Aquifers. See also specific aquifers
depletion of, 349–64
discussion and findings on, 358–64
geology and hydrogeology of, 351–53, 352f
GRACE for, 350–51, 353, 354–56, 356f, 357f
methodology for, 353–58
rainfall and, 354, 358
soil moisture and, 354, 358
surface water and, 357–58
TWS and, 350–51
stream-aquifer-phreatophyte interaction, in tamarisk, 95–111
AR4. See Fourth assessment report
Arabian Peninsula Aquifer System (APAS), 349–64, 350f
AAP for, 359f
geology and hydrogeology of, 351–53, 352f
GRACE for, 350–51, 353
methodology for, 353–58
rainfall and, 354, 358
soil moisture and, 353, 358, 362f
surface water and, 354, 357–58
TRMM and, 353, 360f
ArcGIS, 98, 99, 106, 259, 471
Arizona Department of Water Resources (ADWAR), 397
ARS. See Agricultural Research Service
Artificial neural network (ANN), 256, 262–63, 262f
ASCAT. See Advanced Scatterometer
ASF. See Alaska SAR Facility
Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), 29–30, 30f
ATMS. See Advanced Technology Microwave Sounder
ATOVAS. See Advanced TOVAS
Australia. See Near-surface soil moisture assimilation
Autocorrelation function (ACF), 261
Average annual precipitation (AAP), 358, 463
for APAS, 359f
by CPC, 359
for NSAS, 359f
AVHRR. See Advanced Very High Resolution Radiometers
AVIRIS. See Airborne Visible and Infrared Imaging Spectroradiometer
B. See Bias
Backscattering
coefficients, 120
soil moisture and, 256–57, 257f
SVM and, 271f
BATS. See Biosphere Atmosphere Transfer Scheme
Bayesian methodology
for SWE, 170f
in 2A12 retrieval algorithm, 77
Bias (B), 19t
AMSR-E and, 309
EnKF and, 309, 310, 311
for near-surface soil moisture assimilation, 310
Bidirectional reflectance distribution function (BRDF), 183
Bioenergy ecosystems, WUE in, 479–89
ET for, 483–87
materials and methods for, 480–83
model description and parameterization for, 480–82
results for, 483–88
Biosphere Atmosphere Transfer Scheme (BATS), 165
Bivariate correlation, for AMSR-E soil moisture, 283–86, 283f, 284f, 285f
BLM. See Bureau of Land Management
Boltzmann’s constant, 4
Borehole logging, 101–2
Bowel ratio energy flux tower, 101, 106–8, 107f
BRDF. See Bidirectional reflectance distribution function
Bureau of Land Management (BLM), 451
CABLE. See Community Atmosphere Biosphere Land Exchange
CADWR. See California Department of Water Resources
Calibration/Validation (Cal/Val)
for Iran Central Drainage Basin, water balance in, 468, 473t, 474f, 474t
SMAP and, 247–48
methodologies for, 251t
partner sites for, 251–52
plan for, 249–52
California Central Valley groundwater, InSAR for, 397–405
GPS and, 399, 400, 401, 401f, 402f
GRACE and, 404
L-band and, 402
LOS and, 399, 402
PALSAR and, 404
results for, 401
satellite characteristics for, 400t
SRTM and, 402
USGS and, 401
wells and, 401, 402f
California Department of Water Resources (CADWR), 401
California Irrigation Management Information System (CIMIS), 101
California Statewide Groundwater Elevation Monitoring Project (CASGEM), 401
Cal/Val. See Calibration/Validation
Canadian Centre for Remote Sensing (CCRS), 259
Canadian Council on Geomatics (CCOG), 259
Canadian Prairies (CP), 227–41, 231f, 233f, 234f
Canadian Space Agency (CSA), 255
Canopy. See Trees
Canopy closure (CC), 203
/ VEG and, 207, 207f
Canopy Height Model (CHM), 457, 460f
Carbon cycle, at CZO, 493–507
COSMOS and, 497
DEM and, 495
discussion on, 504–7
ET and, 497, 502f–503f
FAA and, 497
groundwater and, 503f
LAI and, 497, 500, 504f, 506
land cover and, 495, 496f
LSM and, 506
Index 539

NLCD and, 500
NLDMAS and, 494
NPP and, 499
parameterizing models, 497–99
precipitation and, 497
RZSM and, 494
SAR and, 494
site description and field measurements for, 494–95, 494f
soil and, 495, 496f
soil moisture and, 502f–503f
SWAT and, 493

CASGEM. See California Statewide Groundwater Elevation Monitoring Project

Catchment land surface model, 72t
C-band
 AirSAR and, 388–89, 391f
 SAR and, 384
CC. See Canopy closure
CCOG. See Canadian Council on Geomatics
CCRS. See Canadian Centre for Remote Sensing
CCs. See Correlation coefficients
CDF. See Cumulative distribution function
Center for Space Research (CSR), 119
Central Congo Basin, 117–27
CEOS. See Committee on Earth Observing Satellites
CERES. See Clouds and Earth’s Radiant Energy System
Certificate of Authorization (COA), 454
CFS. See Climate Forecast System
CFSR. See Climate Forecast System reanalysis
CGPS. See Continuous global positioning system
Chlorophyll. See Mytilus californianus
CHM. See Canopy Height Model
Cibola National Wildlife Refuge (CNWR), 97–98, 97f, 98f
CIMIS. See California Irrigation Management Information System
Citizen Weather Observer Program (CWOP), 497
Civil Service Reform Committee (CSRC), 482
CLASS. See Comprehensive Large Array-Data Stewardship System
Climate Forecast System (CFS), 513
Climate Forecast System reanalysis (CFSR)
 GEO IR and, 51–53
 precipitation motion vectors and, 54
Climate modeling grid (CMG), 178–79
Climate Predication Center (CPC), 43, 44
 AAP by, 359
 CMORPH and, 46f
 Climate Prediction Center Morphing technique (CMORPH), 43, 50f, 54f. See also Pole-to-pole CMORPH
AMSR-E and, 44
CPC and, 46f
current generation and limitations of, 44–46
FOV and, 44
GEO and, 44
GPM and, 46
KF and, 44, 45f, 46, 55
LEO and, 44, 46, 53, 54f
PMW and, 44–46, 53, 54f
POD and, 44
 pole-to-pole, 53–56, 56f
TMI and, 44, 57f
Climate Research Unit (CRU), 482
Climatological snow distribution pattern (CSDP), 169
Cloud liquid water, 6–7
Cloud misclassification, 180–82, 182t
Cloud motion vectors, 49–53
Clouds and Earth’s Radiant Energy System (CERES), 176
CLPX. See Cold Land Processes Experiment
CMG. See Climate modeling grid
CMORPH. See Climate Prediction Center Morphing technique
CNWR. See Cibola National Wildlife Refuge; Tamarisk
CO2, 159
COA. See Certificate of Authorization
Coasts
 GPROF RNC over, 14–15, 14f
 GSMap RNC over, 17–18
 Cohen kappa evaluation system, 390
Cold Land Processes Experiment (CLPX), 228
Committee on Earth Observing Satellites (CEOS), 248, 250
Community Atmosphere Biosphere Land Exchange (CABLE), 306–14, 312f
AMSR-E and, 309, 310, 310f, 314, 315
OL for, 312, 313, 313f
RMSE for, 312, 313, 313f
UP for, 312, 313f
Comprehensive Large Array-Data Stewardship System (CLASS), 177
Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), 512
Continuous global positioning system (CGPS), 400
CONUS
 NMQ and, 64, 64f, 77
 QPE and, 65
 TMI and, 72, 75
2A12 retrieval algorithm and, 76
Convective percent index (CPI)
 HSS and, 69
 NMQ and, 64–65
 PDF and, 69, 75
 PR and, 67, 68f, 69–70, 70f, 71f, 72
 rain fraction and, 67
 TMI and, 74–75, 76f
Core validation sites (CVS), 250, 251–52
Correlation coefficients (CCs). See also Autocorrelation function; Bivariate correlation; Pearson’s correlation; Spearman’s Rank Correlation
 ICE-1 and, 120–22, 122f
COSMIC. See Constellation Observing System for Meteorology, Ionosphere, and Climate
Cosmic Ray Soil Moisture Observing System (COSMOS), 251
 carbon cycle at CZO and, 497
 UAS and, 456–57, 458f
Cosmo-Skymed, 400t
Coupled Routing and Excess STorage (CREST), 442, 442f, 445, 445f, 446, 447f
INDEX

CP. See Canadian Prairies
CPC. See Climate Predication Center
CPI. See Convective percent index
CREST. See Coupled Routing and Excess STorage
CrIS. See Cross-track Infrared Sounder
Critical success index (CSI), 38, 38f
Crop coefficient, 108
Cross-track Infrared Sounder (CrIS), 176
CRU. See Climate Research Unit
CSA. See Canadian Space Agency
CSDP. See Climatological snow distribution pattern
CSI. See Critical success index
CSR. See Center for Space Research
CSRC. See Civil Service Reform Committee
Cumulative distribution function (CDF)
AMSRE and, 325
of SAC-SMA, 323
CVS. See Core validation sites
CWOP. See Citizen Weather Observer Program
CZO. See National Critical Zone Observatory
DA. See Data assimilation
Dakhla Aquifer System (DAS), 354–56, 356f, 360–62
soil moisture in, 362f
TRMM and, 361f
TWS and, 358, 359
Data assimilation (DA)
for soil moisture, 323
for SWE, 168
Database modeling, for RNC, 20–21
DAV. See Diurnal amplitude variation
D-DAV. See Dynamic DAV
Decision Support Systems for Agro-technology Transfer (DSSAT), 524
DEM. See Digital elevation model
Dense-medium radiative-transfer theory model (DMRT), 241
DHG. See Downstream hydraulic geometry
Dielectric constant, 8
Digital elevation model (DEM), 84
carbon cycle at CZO and, 495
LiDAR and, 99, 103, 495
RADARSAT-2 and, 259
SRTM and, 85f, 118f
UAS and, 452, 454–55, 455f, 455t, 457
for WISCLAND, 390, 390f, 391–92
Yukon River Basin river width and, 132, 134, 134f
Dissolved organic carbon (DOC), 497, 501
Diurnal amplitude variation (DAV)
AMSRE and, 216, 218, 218f, 220f, 221f, 225
data for, 216
Ku-band and, 218
melt-refreeze and, 215–25, 220f, 221f, 222f
methodology for, 217–19, 217f
MODIS and, 216, 219
SMR and, 225
of snowmelt, 215–25
SRM and, 222, 223f
SSM/I and, 217, 225
SWE and, 218, 224f
validation and interpretation, 219
DMRT. See Dense-medium radiative-transfer theory model
DOC. See Dissolved organic carbon
Downstream hydraulic geometry (DHG), 131–32, 134–35, 138, 139f
Drop size distribution (DSD), 6–7. See also Marshall-Palmer drop size distribution
PIA and, 65
DSSAT. See Decision Support Systems for Agro-technology Transfer
Dynamic DAV (D-DAV), 218
Earth Observing System (EOS), 44
AMSR-E and, 331
Mytilus californianus and, 430
Suomi National Polar-Orbiting Partnership and, 176
Earth Resources Observation and Science (EROS), 184, 384–95
Earth Science and Applications from Space (ESAS), 143
Earth System Data Records (ESDRs), 333
EASE-Grid. See Equal Area Scalable Earth-Grid
EC. See Eddy covariance
ECMWF. See European Center for Medium-Range Weather Forecasts
Ecohydrology model, for water resources management, 521–32, 527f
discussions for, 529–32
groundwater and, 527f
methods for, 523–26
NDVI and, 526, 527f
results for, 526–29
ECVs. See Essential climate variables
Eddy covariance (EC), 457
EDRs. See Environmental data records
EET. See Estimated evapotranspiration
EF. See Evaporative fraction
Effective field of view (EFOV), 15–16, 20
EHED. See End of high DAV
Electromagnetic waves (EM), 8–9
El Nino-Southern Oscillation (ENSO), 234, 236
EM. See Electromagnetic waves
EMC. See Environmental Modeling Center
Empirical orthogonal functions (EOFs)
for Nile Basin water storage, 370f, 373
TRMM and, 373
End of high DAV (EHED), 217
Enhanced Thematic Mapper (ETM+), 84
for aquifer depletion, 357
/SCA and, 203
SCA and, 165–66
SWE and, 166–68, 167f
VIIRS and, 184
for Yukon River Basin river width, 133
Enhanced vegetation index (EVI), 96, 108
Ensemble Kalman filter (EnKF)
B and, 309, 310, 311
LSM and, 305, 309
ENSO. See El Nino-Southern Oscillation
EnSRF. See Ensemble square root filter
ENVI. 388
Environmental data records (EDRs), 175, 176, 177t, 195
Environmental Modeling Center (EMC), 414f
Environmental Satellite (ENVISAT), 354
InSAR and, 400t
for TWS, 117–27
data sets for, 119
GDR and, 119
results for, 120–22, 120f, 121f, 122f
Environmental Science Services Administration (ESSA), 162
EOFs. See Empirical orthogonal functions
EOS. See Earth Observing System
Equal Area Scalable Earth-Grid (EASE-Grid), 216, 217
Equitable threat score (ETS), 19
Equivalent water height (EWH), 119
ERA, 513, 513f, 514
EROS. See Earth Resources Observation and Science
ESA. See European Space Agency
ESAS. See Earth Science and Applications from Space
ESSA. See Environmental Science Services Administration
Essential climate variables (ECVs), 248
Estimated evapotranspiration (EET), 482, 483, 483f, 484f, 485, 485f, 485t, 487
ET. See Evapotranspiration
ETM+. See Enhanced Thematic Mapper
ETS. See Equitable threat score
European Center for Medium-Range Weather Forecasts (ECMWF), 49, 513, 524–25
European Space Agency (ESA), 277
NASA Giovanni and, 333
for soil moisture, 353, 354
Evaporative fraction (EF)
SAVI and, 107
SEBAL and, 100, 105–6
MBE for, 107
RMSE for, 107
Evapotranspiration (ET). See also Actual evapotranspiration;
Estimated evapotranspiration; Potential evapotranspiration
carbon cycle at CZO and, 497, 502f–503f
comparison of observed and estimated values, 87–88, 88f, 89f, 89t, 90f
EVI and, 96
FEWS and, 441
in Iran Central Drainage Basin, 468, 472, 475f, 476, 476f
LE and, 100
LULC and, 88, 90–91
MAE for, 88
MODIS and, 83–92
materials and methods for, 84–87
results and discussion for, 87–92
uncertainties of estimation, 91–92
NDVI and, 96
Priestley-Taylor approach for, 83
in PVID, 110
SEBAL and, 100–101
spatiotemporal characteristics of, 88–89
in tamarisk, 95
TEM and, 482
3T and, 83–92
materials and methods for, 84–87
results and discussion for, 87–92
uncertainties of estimation, 91–92
UAS and, 456–57
VI and, 95–96
WUE and, 91
in bioenergy systems, 484–87
EVI. See Enhanced vegetation index
EWH. See Equivalent water height
FAA. See Federal Aviation Administration
False alarm ratio (FAR), 19t
RNC and, 18
Famine Early Warning System (FEWS), 441
FAO. See Food and Agriculture Organization
FAR. See False alarm ratio
FAS. See Foreign Agricultural Service
Federal Aviation Administration (FAA), 452
carbon cycle at CZO and, 497
COA by, 454
FEWS. See Famine Early Warning System
Field of view (FOV), 8, 20
CMORPH and, 44
EFOV, 15–16, 20
HA93 and, 15
IFOV, 228
NMQ and, 64, 65
PR and, 67, 77
RNC and, 10, 20
RNUBF and, 67
2A25 retrieval algorithm and, 77
FIS. See Fuzzy interference system
FLH. See Freezing level height
Food and Agriculture Organization (FAO), 482
Foreign Agricultural Service (FAS), 333
Forests. See also High-density forest; Low-density forest
GRFM and, 118
inventory of, 203
SCA in, 200
Fourth assessment report (AR4), by IPCC, 512
FOV. See Field of view
FPAR. See Fraction of photosynthetically active radiation
FPGA, 144
Fractional snow-covered area (SCA), 199–200, 201
comparison with ground-based snow cover, 204–6, 205f, 206f, 207f, 208
ETM+ and, 203
Landsat TM for, 203–4
TMS/CAG and, 203–6, 210
Fraction of photosynthetically active radiation (FPAR), 524
Freezing level height (FLH)
 GPROF RNC and, 13
 GSMap MWR and, 29
Freshwater bodies, Ka-band for, 143–54
 experimental configuration for, 144–46, 145f, 145t
 experimental results for, 146–51, 147f, 148f, 149f, 150f, 151f
 SWOT and, 149–54, 152f
temporal coherence times and, 151–53
Fresnel equation, 8
Fresnel reflection coefficient, 146
SCA. See Fractional snow-covered area
VEG. See Vegetation fraction
GANAL. See Global analysis
GCOM. See Global Change Observation Mission
GCOS. See Global Climate Observation System
GDR. See Geophysical Data Record
GDS. See GrADS Data Server
GEO. See Geostationary satellites
GeoForschungs Zentrum (GFZ), 119, 371
Geophysical Data Record (GDR), 119
Geosat Follow-On (GFO), 354
Geospatial Interactive Online Visualization ANd aNalysis Infrastructure. See NASA Giovanni
GEOSS. See Global Earth Observing System of Systems
Geostationary satellites (GEO)
 CMORPH and, 44
 IR and, 43, 44, 46, 47
 CFSR and, 51–53
 precipitation motion vectors and, 54
GeoTIFF, 388
German Research Centre for Geosciences. See GeoForschungs Zentrum
GES DISC. See Goddard Earth Sciences Data and Information Services Center
GEWEX, 512. See also Global Precipitation Climatology Project
 SSG of, 515–16
GEWEX Science Questions (GSQs), 515–18
GFDS. See Global Flood Detection System
GFO. See Geosat Follow-On
GFS. See Global Forecast System
GFZ. See GeoForschungs Zentrum
Gilbert skill score (GSS), 18–19, 19f
Giovanni. See NASA Giovanni
GLCF. See Global Land Cover Facility
GLDAS. See Global Land Data Assimilation System
GLISTIN, 154
Global analysis (GANAL)
of JMA, 29
 optimal strategy for, 43–58
Global Change Observation Mission (GCOM), 277
NASA Giovanni and, 333
Global Climate Observation System (GCOS), 248
Global Earth Observing System of Systems (GEOSS), 248
Global Flood Detection System (GFDS), 439, 441–42
Global Forecast System (GFS), 51
Global Land Cover Facility (GLCF), 133
Global Land Data Assimilation System (GLDAS), 331, 333
Global Modeling and Assimilation Office (GMAO), 49
Global Navigation Satellite System (GNSS), 371
Global positioning system (GPS), 512
 AirSAR and, 386–88
 InSAR and, 399, 400, 401, 401f, 402f
 for UAS, 457
 for water balance in Iran Central Drainage Basin, 469
Global Precipitation Climatology Project (GPCP), 3, 516
Global Precipitation Mission (GPM), 6, 43
 CMORPH and, 46
 LEO and, 77
 MODIS and, 72, 72t
 NDVI and, 72t
 NMQ and, 62–63, 62f
 parallax effects and, 72
 QPEs and, 61
 TMI and, 72
Global Rain Forest Mapping (GRFM), 118
Global satellite mapping (GSMap), 4
 CIS and, 38, 38f
 LIS and, 345
 LUTs and, 31, 33–36, 35f
 MCS and, 36
 MWRs and, 28–29
 orographic/nonorographic rainfall classification scheme and, 28, 28n1, 30–31
 PCT and, 12, 18
 PR and, 31f, 345
 RNC and, 15–18, 16f
 over coasts, 17–18
 over land, 15–16
 over ocean, 16–17
 TMI and, 31f, 34f, 37f
Global Soil Moisture Databank, 319
Global Terrestrial Observation System (GTOS), 248
Global Visualization Viewer, 101
Global water budget, 514–15
GMAO. See Global Modeling and Assimilation Office
GNSS. See Global Navigation Satellite System
Goddard Earth Sciences Data and Information Services Center (GES DISC), 332
NASA Giovanni and, 333
NLDAS and, 424, 425t
Goddard profiling (GPROF), 4
 AMSR-E and, 10, 12
 CIS and, 38, 38f
 GPM and, 12
 PR and, 31f
 RNC and, 12–15
 FLH and, 13
 LWP and, 13
 over coasts, 14–15, 14f
 over land, 12–13
 over oceans, 13, 13f
SI and, 11
SSM/I and, 10
TMI and, 10, 31f, 65
TRMM and, 12, 27
Goddard scattering (GSCAT), 4
RNC and, 12
SI and, 11
SSM/I and, 12
Goddard Space Flight Center (GSFC), 49
GPCP. See Global Precipitation Climatology Project
GPM. See Global Precipitation Mission
GPP. See Gross primary product
GPROF. See Goddard profiling
GPS. See Global positioning system
GRACE. See Gravity Recovery and Climate Experiment
GrADS Data Server (GDS), 423
Gravity Recovery and Climate Experiment (GRACE) for APAS, 353
for aquifer depletion, 350–51, 353, 354–56, 356f, 357f
InSAR and, 404
Nile Basin water storage and, 368, 371, 373–77, 377f
for NSAS, 353
PCA for, 375f
TRMM and, 354
for TWS, 117–27, 350–51, 373, 375f
data sets for, 119
results for, 125
Great Plans heat wave, 414–15, 415f, 416f, 417f
GRFM. See Global Rain Forest Mapping
Grody-Ferraro screening methodology, 10
Gross primary product (GPP), 499
Groundhog Day Blizzard, 412–14, 413f
Groundwater, 398f. See also Aquifers; California Central Valley groundwater
background on, 398–99
carbon cycle at CZO and, 503f
ecohydrology model for water resources and, 527f
monitoring applications for, 404
regional-scale groundwater potential maps, SAR for, 383–94
in tamarisk, 98–99, 102–4, 102f, 103f
GSCAT. See Goddard scattering
GSFC. See Goddard Space Flight Center
GSMap. See Global satellite mapping
GSQs. See GEWEX Science Questions
GSS. See Gilbert skill score
GTOS. See Global Terrestrial Observation System
HA93, 14–15
HD. See High-density forest
Heidke skill score (HSS), 18–19, 19t
CPI and, 69
PR and, 66–67, 67f
Helsinki University of Technology (HUT), 241
High-density forest (HD), 200–201, 201f, 202f, 209
SF for, 207, 208f
HOBO, 98
HRU. See Hydrologic response units
HSL. See Hydrological Sciences Laboratory
HSS. See Heidke skill score
Hurricane Irene, 417, 418f, 419f, 420f
HUT. See Helsinki University of Technology
Hydrological Sciences Laboratory (HSL), 422
Hydrologic response units (HRU), 465, 467, 469
Ice
Marshall-Palmer size distribution for, 21
microwave absorption of, 8
2A12 retrieval algorithm and, 77
ICE-1, 119
CCs and, 120–22, 122f
ICE-2, 119
IDPS. See Interface data processing segment
IDW. See Inverse distance weight
IEM. See Integral equation model
IFOV. See Instantaneous field of view
IGBP. See International Geosphere-Biosphere Programme
IHDP. See International Human Dimensions
IMS. See Interactive Multisensor Snow
Indian subcontinent, TMI rainfall retrieval over, 27–39, 28f, 29f, 31f, 32f, 37f
Infrared (IR)
AVHRR and
LEO and, 47, 47f, 49–50, 54
NOAA and, 48, 48f
PDF and, 48
PMW and, 48, 49–50, 49t, 51f, 54
GEO and, 43, 44, 46, 47
CFSR and, 51–53
precipitation motion vectors and, 54
LEO and, PMW and, 55f
TRMM and, 27
InSAR. See Interferometric synthetic aperture radar
Instantaneous field of view (IFOV), 228
Integral equation model (IEM)
for soil moisture, 255, 261–62, 267–68
SVM and, 256
Interactive Multisensor Snow (IMS), 198
Intercomparison Soil Moisture portal, of NASA Giovanni, 333–38, 334f, 335f, 336f, 337t
Interface data processing segment (IDPS), 177
Interferometric synthetic aperture radar (InSAR), 117
background on, 399
for California Central Valley groundwater, 397–405
GFS and, 399, 400, 401, 401f, 402f
GRACE and, 404
L-band and, 402
LOS and, 399, 402
PALSAR and, 404
results for, 401
satellite characteristics for, 400t
SRTM and, 402
USGS and, 401
wells and, 401, 402f
Intergovernmental Panel on Climate Change (IPCC), 463
AR4 by, 512
Intermediate product (IP), 180
International Geosphere-Biosphere Programme (IGBP), 518
International Human Dimensions (IHDP), 518
International Precipitation Working Group (IPWG), 20
QPEs and, 61
International Soil Moisture Network, 319
Intertidal surface temperature (IST), Mytilus californianus and, 428, 430, 431f
LR for, 434–35, 436
Pearson’s correlation for, 434, 435f
twelve year averages for, 432, 433f
Inter Tropical Convergence Zone (ITCZ), 118
Inverse distance weight (IDW), 84, 85, 91
IP . See Intermediate product
IPCC. See Intergovernmental Panel on Climate Change
IPWG. See International Precipitation Working Group
IR. See Infrared
Iran Central Drainage Basin
ET for, 468, 472, 475f, 476, 476f
LAI for, 468
PERC in, 466, 476f
precipitation in, 476f
slope map for, 472f, 472t
soil in, 466t, 470t, 471t
SURQ in, 472, 475f, 476f
SW in, 472, 475f, 476f
water balance in, 463–77
calibration and sensitivity analysis for, 468, 473t,
474t, 474t
GPS for, 469
hydrologic model for, 465–68
LULC for, 465, 467f, 469f, 470t
materials and methods for, 463–68
model calibration for, 471
study area for, 463–65, 464f
ISRO-CNES SARAL/AltiKa, 144
IST. See Intertidal surface temperature
ITCZ. See Inter Tropical Convergence Zone
Japan Aerospace and Exploration Agency (JAXA), 3.
See also Tropical Rainfall Measuring Mission
GSMap by, 15
NASA Giovanni and, 333
PALSAR and, 119
Japanese Earth Resources Satellite-1 (JERS-1), 118
PALSAR and, 119
Japanese Reanalysis (JRA), 513
Japan Meteorological Agency (JMA), 29
Japan Resources Observation Systems Organization (JAROS), 119
JAXA. See Japan Aerospace and Exploration Agency
JERS-1. See Japanese Earth Resources Satellite-1
Jet Propulsion Laboratory (JPL), 119
LAS of, 331
in WinSAR, 399–400
JMA. See Japan Meteorological Agency
Joint Polar Satellite System (JPSS), 176
JPL. See Jet Propulsion Laboratory
JPSS. See Joint Polar Satellite System
JRA. See Japanese Reanalysis
Ka-band
coherent scattering and, 146–51, 147f, 148f, 149f,
150f, 151f
for freshwater bodies, 143–54
experimental configuration for, 144–46, 145f, 145t
SWOT and, 149–54, 152f
temporal coherence times and, 151–53
radiofrequency and, 146
swath mapping, SWOT and, 127
Ka-band radar interferometer (KaRIN), 143, 154
Ka-band SWOT phenomenology airborne radar
(KaSPAR), 154
Kalman filter (KF). See also Ensemble Kalman filter
CMORPH and, 44, 45f, 46, 55
pole-to-pole CMORPH and, 53
KaRIN. See Ka-band radar interferometer
KaSPAR. See Ka-band SWOT phenomenology airborne radar
KF. See Kalman filter
KSS. See Kuiper skill score
Ku-band
DAV and, 218
TOPEX, 120, 143
TRMM and, 143
Kuiper skill score (KSS), 18–19, 19t
L2_SM_AP, 250
Laboratoire d’Etudes en Geophysique et Oceanographie Spatiales (LEGOS/GOHS), 354
LAI. See Leaf area index
Land
GPROF RNC over, 12–13
GSMap RNC over, 15–16
Land Parameter Retrieval Model (LPRM), 308, 322–23, 333
RZSM and, 333
Land Product Quality Assessment, 177
Land product validation (LPV), 248
Landsat. See also Enhanced Thematic Mapper; Thematic Mapper
MSS, 163
NDSI and, 185–86
RADARSAT-2 and, 259
UTM and, 186
VIIRS and, 184–88, 185f, 186f, 187f, 188f, 189f, 190f
Land surface models (LSM)
AMSR-E and, 306
carbon cycle at CZO and, 506
EnKF and, 305, 309
NLDAS and, 412
for soil moisture, 305–16
Land surface temperature (LST), 84
EVI and, 96
MODIS and, 278
Mytilus californianus and, 428, 430, 431f
LR for, 434–35, 436
Pearson’s correlation for, 434, 435f
twelve year averages for, 432, 433f
RBFNN and, 263, 263t
soil moisture and, 259–61
soil temperature disaggregation and, 281
Land use and land cover (LULC), 85, 85f
ET and, 88, 90–91
for water balance in Iran Central Drainage Basin, 465, 467f,
469f, 470t
Land use efficiency (LUE), 488, 489
LAS. See Live Access Server
LASSI, 98
Latent heat flux (LE), 100
Lat-Lon Map, 333, 334f
L-band. See also Phased array L-band synthetic aperture radar
AirSAR and, 388
InSAR and, 402
SAR and, 384
SMAP and, 247, 277
SMOS and, 277
LCRAS. See Lower Colorado River Accounting System
LD. See Low-density forest
LE. See Latent heat flux
Leaf area index (LAI), 85, 524
carbon cycle at CZO and, 497, 500, 504f, 506
for Iran Central Drainage Basin, 468
MODIS and, 308
near-surface soil moisture assimilation and, 306–7
soil moisture and, 259–60
SWE and, 200
LEAKI, 447
LEAKO, 442, 447
Legendre coefficients, 7
LEGOS/GOHS. See Laboratoire d’Etudes en Geophysique et Oceanographie Spatiales
LEO. See Low-Earth-orbit platforms
LiDAR, 98, 211
DEM and, 99, 103, 495
Lightning imaging sensor (LIS), GSMap and, 345
MWR and, 29
Linear regression (LR), 266
for Mytilus californianus, 434–35, 436
Line-of-sight (LOS), InSAR and, 399, 402
Liquid water path (LWP), 13
LIS. See Lightning imaging sensor
Live Access Server (LAS), 331
LLLS. See Low-level light sensor
Log odds ratio, 19t
Long Term Ecological Research (LTER), 452
Lookup tables (LUTs)
GSMap and, 31, 33–36, 35f
MWR and, 29
for PCT85, 35, 36f
S13 and, 28
LOS. See Line-of-sight
Low-density forest (LD), 200–201, 201f, 202f, 209
SF for, 207, 208f
Low-Earth-orbit platforms (LEO), 43
AVHRR and
IR and, 47, 47f, 49–50, 54
LEO PMW and, 55
CMORPH and, 44, 46
GPM and, 77
PMW and, 44, 47f
CMORPH and, 53, 54f
IR and, 55f
LEO AVHRR and, 55
QPEs and, 61
TMI and, 66
Lower Colorado River. See Tamarisk
Lower Colorado River Accounting System (LCRAS), 108
Lower zone free primary content (LZFPC), 323
Lower zone free supplemental content (LZFSC), 323
Lower zone tension water content (LZTWC), 322–23
Low-level light sensor (LLLS), 176
LP92. See Micronet
LPRM. See Land Parameter Retrieval Model
LPV. See Land product validation
LR. See Linear regression
LSM. See Land surface models
LSMEM-TMI, 333
LST. See Land surface temperature
LTER. See Long Term Ecological Research
LUE. See Land use efficiency
LULC. See Land use and land cover
LUTs. See Lookup tables
LWP. See Liquid water path
LZFPC. See Lower zone free primary content
LZFSC. See Lower zone free supplemental content
LZTWC. See Lower zone tension water content
MacDonald Dettwiler and Associates Ltd. Geospatial Services Inc. (MDA-GSI), 259
MAE. See Mean absolute error
MAIRS. See Monsoon Asia Integrated Regional Study
Making Earth System Data Records for Use in Research Environments (MEaSUREs), 333, 400
Man and the Biosphere Program, of UNESCO, 452
Mann-Kendall test, 230
Marshall-Palmer drop size distribution, 5
ice and, 8, 21
Mars Science Laboratory (MSL), 144, 144t, 152
Maximum likelihood classification (MLC), 465
MBE. See Mean bias error
MCS. See Mesoscale convective system
MDA-GSI. See MacDonald Dettwiler and Associates Ltd. Geospatial Services Inc.
Mean absolute error (MAE), 87
for ET, 88
of SWE, 168–69
for 3T, 84
Mean bias error (MBE), 107
Mean relative error (MRE)
of 2A12 retrieval algorithm, 75, 76f
VIL and, 75
MEaSUREs. See Making Earth System Data Records for Use in Research Environments

Megha Tropiques (MT), 6

Melt onset date (MOD), 217

Melt-refreeze
DAV and, 215–25, 220f, 221f, 222f
PMW of, 215–25
relationship to other processes, 219–22

MEMLS. See Microwave emission model of layered snowpacks

MERRA. See Modern Era Retrospective Analysis for Research and Applications

MESMA. See Multiple end-member spectral mixture analysis

Mesoscale convective system (MCS)
GSMAP and, 36
TRMM and, 31, 33f

Meteorological Operational (METOP), 354

Meteorological Service of Canada (MSC), 164
SWE and, 240

METOP. See Meteorological Operational

METRIC, 97

Micronet
for AMSR-E soil moisture, 287–300, 288f, 289f, 290t, 291–292t, 293t, 294f, 295f, 296f, 297f, 298f, 299f, 300f, 301f
for NLDAS, 287–300
RMSE for, 287–89
soil moisture and, 280f

Microwave absorption
by gaseous atmosphere, 6
of ice, 8
of precipitation, 8–9
of snow, 8
of soils, 8

Microwave emission model of layered snowpacks (MEMLS), 241

Microwave radiometers (MWRs). See also Passive microwave; specific types
GSMAP and, 28–29
orographic/nonorographic rainfall classification scheme and, 28, 30–31
TRMM and, 27

Mie efficiency factors, 9

Mirador Search and Download, 422

MISR. See Multiangle Imaging SpectroRadiometer

MLC. See Maximum likelihood classification

MOD. See Melt onset date

Moderate Resolution Imaging Spectroradiometer (MODIS), 50
for AMSR-E soil moisture, 277–302
DAV and, 216, 219
ET and, 83–92
materials and methods for, 84–87
results and discussion for, 87–92
uncertainties of estimation, 91–92
EVI and, 96, 108
SCA and, 199, 200

GPM and, 72, 72t
LAI and, 308
LST and, 278
Mytilus californianus and, 430
NDVI and, 66, 278, 281, 372
NEE and, 501f
RADARSAT-2 and, 259
SCA and, 168
Suomi National Polar-Orbiting Partnership and, 176
SWE and, 166–68, 167f, 229
TWS and, 118
for ungauged basins, 440
VIIRS and, 176

Modern Era Retrospective Analysis for Research and Applications (MERRA), 49, 50f, 512–13

MODIS. See Moderate Resolution Imaging Spectroradiometer

MODIS snow-covered area and grain size algorithm (MODSCAG), 168
SCA and, 200
SWE and, 168

Monsoon Asia Integrated Regional Study (MAIRS), 331

MPE. See Multisensor precipitation estimator

MRE. See Mean relative error

MSC. See Meteorological Service of Canada

MSL. See Mars Science Laboratory

MSS. See Multispectral Scanner

MT. See Megha Tropiques

Multiangle Imaging SpectroRadiometer (MISR), 211

Multiple end-member spectral mixture analysis (MESMA), 179–80

Multisensor precipitation estimator (MPE), 322

Multispectral Scanner (MSS), 163

Mussels. See Mytilus californianus

MWCOMB, 44–45, 53

NARR. See North American Regional Reanalysis

NAS. See National Aeronautics and Space Administration
NASA Giovanni, 423
Intercomparison Soil Moisture portal of, 333–38, 334f, 335f, 336f, 337f
NLDAS and, 343f, 344f, 345f
for soil moisture, 321–45
Soil Moisture Products of, 331–33, 332t
Texas drought of 2011 and, 338, 339f, 340f, 341f, 342f
Tropical Storm Lee and, 338
NASDA. See National Space Development Agency
Nash-Sutcliffe coefficient of efficiency (NSCE), 445, 446, 468
National Aeronautics and Space Administration (NASA), 3.
See also Moderate Resolution Imaging Spectroradiometer; NASA Giovanni; Tropical Rainfall Measuring Mission
AirSAR and, 383
aquifer depletion and, 354
catchment land surface model of, 72t
EDRs and, 177
GSFC of, 49
LPRM and, 308, 322–23
SAR and, InSAR and, 400t
SMAP and, 247, 251
Snow & Sea Ice Global Mapping Project of, 180
stage IV WSR-88D and, 65–66
National Airspace System (NAS), 452, 454
National Center for Atmospheric Research (NCAR), 49, 507
National Centers for Environmental Prediction (NCEP), 414f, 513
GFS of, 51
reanalysis by, 49
National Critical Zone Observatory (CZO)
carbon cycle at, 493–507
COSMOS and, 497
DEM and, 497
discussion on, 504–7
ET and, 497, 502f–503f
FAA and, 497
groundwater and, 503f
LAI and, 497, 500, 504f, 506
land cover and, 495, 496f
LSM and, 506
NLCD and, 500
NLDAS and, 494
NPP and, 499
parameterizing models, 497–99
precipitation and, 497
RZSM and, 494
SAR and, 494
site description and field measurements for, 494–95, 494f
soil and, 495, 496f
soil moisture and, 502f–503f
SWAT and, 493
ecophysiological parameters of, 500t
tree survey in, 499t
National Elevation Dataset (NED), 390
National Integrated Catchment-based Ecolohydrology (NICE), 523–24, 524f
National Land Cover Database (NLCD)
carbon cycle at CZO and, 500
river discharge and, 320, 321f
for Yukon River Basin river width, 133–34
National Mosaic QPE (NMQ)
comparison between ground-based and space-based radars, 66–72
comparison between ground-based radars and space-based passive sensors, 72–77, 72t, 73t, 74f, 75f, 76f
CONUS and, 64, 64f, 77
CPI and, 64–65
FOV and, 64, 65
GPM and, 62–63, 62f
ground-based products and preprocessing for, 63
level 2 satellite-based precipitation retrievals, 63–66
NEXRAD and, 62, 63, 64
PDF and, 64
PR and, 64, 77
precipitation and
characterization of, 68–69
quantification of, 69–72
for rainfall, 61–77
rain fraction and, 65
reference rainfall for, 63–65
TRMM and, 64, 77
TMIN and, 64, 65–66, 77
VIL and, 63
National Oceanic and Atmospheric Agency (NOAA), 512
AVHRR IR and, 48, 48f
CPC of, 43, 44
EDRs and, 177
GFS of, 51
IMS and, 198
JPSS of, 176
NASA Giovanni and, 331
NMQ of, 63
SCA and, 162
severe weather and, 409, 410f
SNODAS of, 168
TINDVI and, 530f
UAS and, 452
National Polar-Orbiting Partnership (NPP), 175
National Science Foundation, 452
National Snow and Ice Data Center (NSIDC), 228
National Space Development Agency (NASA), 354
National Weather Service (NWS), 320
NASA Giovanni and, 331
Natural Resources Conservation Service (NRCS), 204, 451
SCAN of, 452
Naval Research Laboratory (NRL), 333
NCAR. See National Center for Atmospheric Research
NCE. See Net carbon exchange
NCEP. See National Centers for Environmental Prediction
NCP. See North China Plain
NDSI. See Normalized difference snow index
NDVI. See Normalized difference vegetation index
Near-infrared (NIR), 372
Near-surface soil moisture assimilation, 305–16
 B for, 310
data sets and experimental setup for, 306–9
LAI and, 306–7
methodology for, 309–12
results and discussion for, 313–14
study region for, 307f
NED. See National Elevation Dataset
NEE. See Net ecosystem exchange
Net carbon exchange (NCE), 482, 483, 483f, 484f, 485f, 485t, 486f, 487f
Net ecosystem exchange (NEE), 494, 499
 MODIS and, 501f
Net primary production (NPP), 481, 483, 483f, 484f, 485f, 485t, 486f, 487f
 carbon cycle at CZO and, 499
NEXRAD, 62, 63, 64
NHLR. See Northern Highland Lakes Region
NICE. See National Integrated Catchment-based Ecohydrology
Nile Basin water storage, 367–78, 369f
data sets and methodology for, 371–72
EOFs for, 370f, 373
GRACE and, 368, 371, 373–77, 377f
NDVI and, 368, 372, 377, 378f
PCA for, 370f, 373, 374, 376
rainfall and, 369
TRMM and, 368, 371–73, 377f
TWS and, 368, 371, 373, 375f, 376
95% prediction uncertainty (95PPU), 468, 471, 475f
Nino3, 234
Pearson’s correlation for, 238t
NIR. See Near-infrared
NLCD. See National Land Cover Database
NLDAS. See North American Land Data Assimilation System
NMQ. See National Mosaic QPE
NOAA. See National Oceanic and Atmospheric Agency
Noah model, for NLDAS, 423f, 425f, 434f
Non uniform beam filling (NUBF), 65, 66
 TRMM PR and, 77
2A25 retrieval algorithm and, 72
Normalized difference snow index (NDSI), 179
Landsat and, 185–86
Normalized difference vegetation index (NDVI), 322, 525
ecohydrology model for water resources management and, 526, 527f
ET and, 96
GPM and, 72t
MODIS and, 66, 278, 281, 372
Nile Basin water storage and, 368, 372, 377, 378f
RBFNN and, 263, 263t
soil moisture and, 259–61
3T and, 85–87
UAS and, 457, 459f
UTM and, 372
VIIRS and, 179
North American Land Data Assimilation System (NLDAS), 168
 for AMSR-E soil moisture, 277–302
data for, 278–80
 methodology for, 280–83
carbon cycle at CZO and, 494
data for, 421–24
GES DISC and, 424, 425t
classification of, 400f
for Great Plains heat wave, 414–15, 415f, 416f, 417f
for groundhog day blizzard, 412–14, 413f
for Hurricane Irene, 417, 418f, 419f, 420f
LSM and, 412
Micronet for, 287–300
NASA Giovanni and, 331, 343f, 344f, 345f
Noah model for, 423f, 425f, 434f
 for severe weather, 409–25, 411f
soil evaporation efficiency model and, 282, 286f, 287f
soil temperature disaggregation and, 280–82
soil variables mapping and, 286–87
SWE and, 414, 414f
 for Tropical Storm Lee, 420–21, 421f, 423f, 424f, 425f
North American Regional Reanalysis (NARR), 238, 240
North China Plain (NCP), 521–23
Northern Highland Lakes Region (NHLR), 384, 387f
NP90. See Micronet
NPP. See National Polar-Orbiting Partnership; Net primary production
NRCS. See Natural Resources Conservation Service
NRL. See Naval Research Laboratory
NSAS. See Nubian Sandstone Aquifer System
NSCE. See Nash-Sutcliffe coefficient of efficiency
NSIDC. See National Snow and Ice Data Center
NUBF. See Non uniform beam filling
Nubian Aquifer System (NAS), 351–52
Nubian Sandstone Aquifer System (NSAS), 349–64, 350f
 AAP for, 359f
geology and hydrogeology of, 351–53, 352f
GRACE for, 350–51, 353
 methodology for, 353–58
rainfall and, 354, 358
soil moisture and, 353, 358, 362f
 surface water and, 354, 357–58
TRMM and, 353, 360f
NUE. See Nutrient use efficiency
Numerical weather prediction (NWP), 305
Nutrient use efficiency (NUE), 488
NWP. See Numerical weather prediction
NWS. See National Weather Service
OCEAN, 119
Oceans. See also National Oceanic and Atmospheric Agency
 GPROF RNC over, 13, 13f
 GSMap RNC over, 16–17
 radiometers and, 5f, 7–8
 SSM/I for, 10
Odds ratio skill score (ORSS), 19, 19t
ODEs. See Ordinary differential equations
OECD. See Organisation for Economic Co-operation and Development
OI. See Optimal interpolation
OL. See Open loop
OMPS. See Ozone Mapping and Profiler Suite
Open loop (OL), for CABLE, 312, 313, 313f
Optimal interpolation (OI), 53
Ordinary differential equations (ODEs), 497
Oregon. See *Mytilus californianus*
Organisation for Economic Co-operation and Development (OECD), 525
Orographic/nonorographic rainfall classification scheme
GSMap MWR and, 28, 28n1, 30–31
improvement of, 29–32
ORSS. See Odds ratio skill score
Oznet, 306, 312
Ozone Mapping and Profiler Suite (OMPS), 176
Pacific Decadal Oscillation (PDO), 234, 235t, 238f
Pearson’s correlation for, 235t, 238t
Spearman’s Rank Correlation for, 235t
SWE and, 236
Palo Verde Irrigation District (PVID), 98
ET in, 110
PALSAR. See Phased array L-band synthetic aperture radar
Parallax effects, 72
Parameter-Elevation Regression on Independent Slopes Model (PRISM), 170
Partial differential equations (PDEs), 497
Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), 428, 429
Passive microwave (PMW), 43
AMSR-E and, 441–42
AVHRR IR and, 48, 49–50, 49t, 51f, 54
CMORPH and, 44–46
LEO and, 44, 47f
AVHRR and, 55
CMORPH and, 53, 54f
IR and, 55f
of melt-refreeze, 215–25
MWCOMB and, 44–45, 53
principles of, 4–6
RNC with, 3–22
of snowmelt, 215–25
SWE and, 227–41
TRMM and, 441–42
for ungauged basins, 439–48
CREST for, 442, 442f, 445, 445f, 446, 447f
data sources for, 440–42
EnSRF and, 442–44, 445
experimental design for, 444–45, 444t
model for, 442
results and discussion for, 445–48
study basin for, 440, 441f
Path integrated attenuation (PIA), 65
P-band, 383, 388–89, 391f
PC. See Percent correct
PCA. See Principal component analysis
PCs. See Principal components
PCT. See Polarization-corrected temperature
PCT85, 35, 36f
PDEs. See Partial differential equations
PDF. See Probability density function
PDO. See Pacific Decadal Oscillation
Pearson’s correlation
for *Mytilus californianus*, 434, 435f
for PDO, 235t, 238t
Penman equation, 322
Penman-Monteith equation, 83
Percent correct (PC), 19t
Percolation (PERC), 466, 476f
PET. See Potential evapotranspiration
PFT. See Plant function type
Phased array L-band synthetic aperture radar (PALSAR)
ALOS, 118, 119, 119t
InSAR and, 400t, 404
ScanSAR, for TWS, 117–27, 118f
data sets for, 119
results for, 122–25, 123f, 124f, 125f
Physical Oceanography DAAC (PODAAC), 331
PIA. See Path integrated attenuation
PIC. See Pilot in command
PIHM. See Penn State Integrated Hydrologic Model
Pilot in command (PIC), 454
PISCO. See Partnership for Interdisciplinary Studies of Coastal Oceans
Planck’s constant, 4
Plant function type (PFT), 493
PMW. See Passive microwave
PNAS. See Post-Nubian Aquifer System
POD. See Probability of detection
PODAAC. See Physical Oceanography DAAC
Polarization-corrected temperature (PCT)
GSMap and, 12, 18
MWR and, 29
HA93 and, 15
for RNC, 11–12, 11f
SSM/I and, 12
Pole-to-pole CMORPH, 53–56, 56f
KF and, 53
Post-Nubian Aquifer System (PNAS), 351
Potential evapotranspiration (PET), 441, 468
TEM and, 482
PR. See Precipitation radar
Precipitation. See also Average annual precipitation;
Quantitative precipitation estimates; Rainfall; Snow
API, 324
carbon cycle in CZO and, 497
CFSR and, 54
GEO IR and, 54
in Iran Central Drainage Basin, 476f
from latent heat release, 3
microwave absorption of, 8–9
models, for RTM, 32–38
Precipitation (cont’d)
motion vectors, 54
NMQ and, 68–69
SWE and, 236–38
TRMM for, 441
Precipitation radar (PR), 3
for aquifer depletion, 354
classification of, 68–69
CPI and, 67, 68f, 69–70, 70f, 71f, 72
FOV and, 67, 77
GPROF and, 31f
GSMap and, 31f, 345
HSS and, 66–67, 67f
NMQ and, 64, 77
NUBF and, 77
POD and, 66, 69
QPE and, 63, 65
rain fraction and, 69
RNC and, 18
RNUBF and, 69, 72
TRMM and, 27, 62, 65, 77, 371
2A12 retrieval algorithm and, 77
Priestley-Taylor approach, for ET, 83
Principal component analysis (PCA), 229, 237f
for GRACE, 375f
for Nile Basin water storage, 370f, 373, 374, 376
for TRMM, 373, 374
Principal components (PCs)
for soil moisture, 260t
SWE and, 233–34, 234f
TRMM and, 373
PRISM. See Parameter-Elevation Regression on
Independent Slopes Model
Probability density function (PDF)
AVHRR IR and, 48
CPI and, 69, 75
for Ka-band for freshwater bodies, 153
NMQ and, 64
Probability of detection (POD), 19t
CMORPH and, 44
PR and, 66, 69
RNC and, 18
TMI and, 75–76
for VIL, 75
PVID. See Palo Verde Irrigation District
QA4EO. See Quality Assurance and Earth Observations
QASDS. See Quality Assessment Science Data Sets
QOCA. See Quasi-Observation Combination Analysis
QPEs. See Quantitative precipitation estimates
Quality Assessment Science Data Sets (QASDS), 372
Quality Assurance and Earth Observations (QA4EO), 248
Quantitative precipitation estimates (QPEs). See also
National Mosaic QPE
CONUS and, 65
GPM and, 61
IPWG and, 61
LEO and, 61
PR and, 63, 65
for rainfall, 61–77
RQI for, 63
TRMM and, 61
Quasi-Observation Combination Analysis (QOCA), 400
QuikSCAT, 218
Radar quality index (RQI), 63
RADARSAT-1, 400t
RADARSAT-2
data and study sites for, 256–59, 257f, 257t, 258f
DEM and, 259
InSAR and, 400t, 404
Landsat and, 259
MODIS and, 259
research objectives for, 256
for soil moisture, 255–73
watershed scale results for, 271–72, 272f
Radial basis function (RBF), 262
Radial basis function neural network (RBFNN), 262–63,
263t, 268–69, 268f
Radiative transfer models (RTMs), 4–5
GSMap MWR and, 29
precipitation-related variable models for, 32–38
Radiofrequency (RF), Ka-band and, 146
Radiometers. See also specific types
ocean and, 5f, 7–8
Radio occultation (RO), 512
Rainfall. See also Orographic/nonorographic rainfall
classification scheme; Tropical Rainfall
Measuring Mission
aquifer depletion and, 354, 358
Nile Basin water storage and, 369
NSAS and, 354, 358
QPEs for, 61–77
rate of, 9f
screening methodologies, 4
TMI for, over Indian subcontinent, 27–39
Rain fraction (RF)
CPI and, 67
NMQ and, 65
PR and, 69
RNUBF and, 67, 72
Rain/no-rain classification (RNC)
contingency matrix for, 18t
database modeling for, 20–21
FOV for, 10
GPROF and, 12–15
FLH and, 13
LWP and, 13
over coasts, 14–15, 14f
over land, 12–13
over oceans, 13, 13f
GSCAT for, 12
GSMap and, 15–18, 16f
over coasts, 17–18
Index 551

over land, 15–16
over ocean, 16–17
methods for, 9–18
open questions on, 20–21
with passive microwave radiometers, 3–22
PCT for, 11–12, 11f
performance analysis for, 18–20, 19t
resampling/matchup errors for, 20
SI for, 10–11, 11t
surface emissions and, 9
Rain yield per flash (RPF), 29
Rayleigh distribution, 147
Rayleigh-Jeans formula, 4
Rayleigh region, 6
RBF. See Radial basis function
RBFNN. See Radial basis function neural network
Real-time hydrologic monitoring sensor-network (RTHnet), 497
Regions of interest (ROIs), 388
for AirSAR, 393t
for WISCLAND, 390
Relative NUBF (RNUBF)
FOV and, 67
PR and, 69, 72
rain fraction and, 67, 72
Remotely sensed energy balance (RSEB), 96–97
SEBAL and, 100
water use and, 109
Resampling/matchup errors, for RNC, 20
Restricted Military Airspace (RMA), 452
RF. See Radiofrequency; Rain fraction
Rice distribution, 147
River discharge
AMSR-E for, 319, 322–23, 325–26, 325f, 326f
ASCAT for, 319, 323, 326–27, 326f
soil moisture and, 319–27
methods for, 323–24
results for, 324–27
study area, model, and data for, 320–23, 321f
STU and, 323–24, 327
River width, in Yukon River Basin, 131–39, 133f
data and methods for, 133–35
distribution of, 136–37
measurement of, 135–36
results for, 135–38, 136f, 137f, 138f
width-discharge relationship, 137–38
RMA. See Restricted Military Airspace
RMSE. See Root mean square error
RNC. See Rain/no-rain classification
RNUBF. See Relative NUBF
RO. See Radio occultation
ROIs. See Regions of interest
Root mean square error (RMSE), 107
for AMSR-E, 325, 327, 327f
for API, 324
for ASCAT, 327, 327f
for CABLE, 312, 313, 313f
for Micronet, 287–89
for PMW of ungauged basins, 445, 446
for RADARSAT-2, 259, 261
for SEBAL EF, 107
Root-zone soil moisture (RZSM). See also Near-surface soil moisture assimilation
carbon cycle at CZO and, 494
LPRM and, 333
SAC-SMA and, 324
RPF. See Rain yield per flash
RQI. See Radar quality index
RSEB. See Remotely sensed energy balance
RTHnet. See Real-time hydrologic monitoring sensor-network
RTMs. See Radiative transfer models
RZSM. See Root-zone soil moisture
S13, 28
Sacramento soil moisture accounting (SAC-SMA), 320, 322, 322f
CDF of, 323
EnKF and, 324, 325
root-zone moisture and, 324
SAS, 354–56, 356f, 362–64
soil moisture in, 362f
Saturation-excess runoff (SSR), 322
SAVI. See Soil adjusted vegetation index
SBAS. See Small baseline subset
SCA. See Single-channel algorithm; Snow-covered area
SCAN. See Soil Climate Analysis Network
Scanning Multichannel Microwave Radiometer (SMMR), 10
DAV and, 225
SWE and, 227–41, 233f
ScanSAR, PALSAR and, for TWS, 117–27, 118f
data sets for, 119
results for, 122–25, 123f, 124f, 125f
Scattering index (SI), 10–11, 11t
SCE. See Snow covered extent
Science Steering Group (SSG), 515–16
SCS-CN. See Soil Conservation Service curve number (SCS-CN)
SDC. See Snow depletion curves
SEA ICE, 119
Sea level pressure (SLP), 234
SEASAT, 384
Sea surface temperature (SST), 234, 514
Mytilus californianus and, 430, 431f
anomalies in, 433, 434f
LR for, 434–35, 436
Pearson's correlation for, 434, 435f
twelve year averages for, 432, 433f
SEBAL. See Surface energy balance algorithm for land
SEBS. See Surface energy balance system
Sentinel-1, 400t
Severe weather
NLDAS for, 409–25, 411f
NOAA and, 409, 410f
SF. See Snow fraction
SFT. See Strong fluctuation theory
Shuttle Radar Topography Mission (SRTM), 84
DEM and, 85f, 118f
InSAR and, 402
SAR and, 383–84
TEM and, 482
SI. See Scattering index
Simple Subset Wizard (SSW), 422
Single-channel algorithm (SCA), 278
SIR-C. See Spaceborne imaging radar
Slope map, for Iran Central Drainage Basin, 472f, 472t
SLP. See Sea level pressure
SMA, 146
Small baseline subset (SBAS), 399
SMAP. See Soil Moisture Active Passive
SMAP Marena Oklahoma In Situ Sensor Testbed (SMAP-MOIST), 251
SMMR. See Scanning Multichannel Microwave Radiometer
SMOS. See Soil Moisture Ocean Salinity
SMU. See Soil moisture updating
SNODAS. See Snow Data Assimilation System
SNOTEL, 163, 165, 169
SWE and, 203, 204, 204f
Snow
microwave absorption of, 8
systematic errors in binary product, 192–94, 193f, 194f
variability in local conditions, 189–90, 191f, 191t, 192f
Snow-covered area (SCA), 160. See also Fractional
snow-covered area; Thematic mapper
snow-covered area and grain model asymmetries in, 207–8, 207f, 208f
CSDP and, 169
ETM+ and, 165
in forests, 200
hydrologic applications to depletion observations, 161–64, 162f
Landsat MSS and, 163
MODIS and, 168
MODSCAG and, 168
SDC and, 177–78
SWE and, 178
trees and, 200
through trees, 199–211
snow observation for, 201–2, 202f
study area for, 200–201, 201f
VIIRS and, 175–96, 199
statistical estimates for, 188–89, 189t
Snow covered extent (SCE), 219
Snow Data Assimilation System (SNODAS), 168
Snow depletion curves (SDC), 159–71, 177–78
Snow fraction (SF), 175, 207, 208f
SNOWMAP, 179, 180
Snowmelt, 215–25
Snowmelt Runoff Model (SRM) DAV and, 222, 223f
SRM and, 162, 162f
SWE and, 163
Snow & Sea Ice Global Mapping Project, 180
Snow water equivalent (SWE), 159–71
AMSR-E and, 228
Bayesian methodology for, 170f
climatic anomalies and, 234–36
CO₂ and, 159
in CP, 227–41, 231f, 233f, 234f
CSDP and, 169
DA for, 168
DAV and, 218, 224f
LAI and, 200
MAE of, 168–69
MODIS and, 229
MSC and, 240
NL-DAS and, 414, 414f
PCs and, 234–35, 235f
PDO and, 236
PMW and, 227–41
precipitation and, 236–38
reconstruction, 164–68, 165f, 166f, 167f
forward models and, 168–69
surface observations and, 168–69
SWE and, 163
SNOWMAP, 179, 180
Snowmelt Runoff Model (SRM) DAV and, 222, 223f
SRM and, 162, 162f
SWE and, 163
SNOWMAP, 179, 180
Snow water equivalent adjustment factor (SWEAF), 228
SNWTP. See South-to-North Water Transfer Project
SOC. See Soil organic carbon
SOI. See Southern Oscillation Index
Soil carbon cycle at CZO and, 495, 496f
dielectric constant of, 8
in Iran Central Drainage Basin, 466f, 470t, 471t
microwave absorption of, 8
Soil adjusted vegetation index (SAVI), 106, 107
Soil and Water Assessment Tools (SWAT), 463, 465
carbon cycle at CZO and, 493
Soil Climate Analysis Network (SCAN), 452
Soil Conservation Service curve number (SCS-CN), 467
Soil evaporation efficiency model, 282f
AMSR-E soil moisture and, 282, 287f
NLDAS and, 282, 286f, 287f
Soil moisture. See also Cosmic Ray Soil Moisture Observing System; Near-surface soil moisture assimilation;
root-zone soil moisture; Sacramento soil moisture accounting
AMSR-E for, 277–302, 319, 322–23, 325–26, 325f, 326f
bivariate correlation for, 283–86, 283f, 284f, 285f
correction, 282–83
Micronet for, 287–300, 288f, 289f, 290t, 291t–292t, 293t,
294f, 295f, 296f, 297f, 298f, 299f, 300f, 301f
NLDAS for, 278–83
ANFIS for, 256, 263–65, 264f, 268, 270f
ANN for, 256, 262–63, 262f
APAS and, 353, 362f
aquifer depletion and, 354, 358
Synthetic aperture radar (SAR). See also Airborne Synthetic Aperture Radar; Interferometric synthetic aperture radar; Phased array L-band synthetic aperture radar; ScanSAR

carbon cycle at CZO and, 494
C-band and, 384
L-band and, 384
methodology for, 384–90
NASA and, InSAR and, 400t

previous work on, 384
for regional-scale groundwater potential maps, 383–94
SEASAT and, 384
SRTM and, 384
study area for, 384

Takagi-Sugeno FIS, 263–64

Tamarisk
borehole logging in, 101–2
Bowen ratio energy flux tower and, 101, 106–8, 107f
ET in, 95
groundwater in, 98–99, 102–4, 102f, 103f

measuring stations for, 98t
SEBAL and, 100–101, 105–6, 105f
stream-aquifer-phreatophyte interaction in, 95–111
vegetation coefficients for, 108–9, 109f
water use in, 99–101, 102–4, 102f, 103f
White method for, 99–100, 104–5, 105f, 107f

TCI. See Total channel inflow

TCI update (STU), 323–24, 327

TDS. See Terminal descent sensor

TEM. See Terrestrial Ecosystem Model

Temporal coherence times, Ka-band for freshwater bodies and, 151–53

Terminal descent sensor (TDS), 144

TerraSAR-X, 400t

Terrestrial Ecosystem Model (TEM), 480–84, 481f
Terrestrial water storage (TWS), 117–27, 118f
aquifer depletion and, 350–51
DAS and, 358, 359
data sets for, 119–20
EWH and, 119
GRACE and, 350–51, 373, 375f
Nile Basin water storage and, 368, 371, 373, 375f, 376
results for, 120–27
Texas drought of 2011, 338, 339f, 340f, 341f, 342f

TGD. See Three Gorges Dam

Thematic Mapper (TM). See also Enhanced Thematic Mapper
for aquifer depletion, 357
for /SCA, 203–4
Landsat, 133, 164
for WISCLAND, 394–96

Thematic mapper snow-covered area and grain model (TMSCAG)
/SCA and, 203–6, 210
/VEG and, 203, 207

Threat score (TS), 19t
RNC and, 18

Three Gorges Dam (TGD), 522, 523, 525
impact of, 528–29, 528f

Three temperature model (3T)
ET and, 83–92
materials and methods for, 84–87
results and discussion for, 87–92
uncertainties of estimation, 91–92
MAE for, 84
NDVI and, 85–87
time and estimation of, 85–86

Time-integrated NDVI (TINDVI), 525, 529
NOAA and, 530f

TIROS Operational Vertical Sounder (TOVS), 512

TM. See Thematic Mapper

TMI. See TRMM Microwave Imager

TMPA. See TRMM multi-satellite precipitation analysis

TMSCAG. See Thematic mapper snow-covered area and grain model
TOA, 514

TOPEX, 120, 143
Total channel inflow (TCI), 320, 322, 322f, 323

AMSR-E and, 325

TOVAS. See TRMM Online Visualization and Analysis System

TOVS. See TIROS Operational Vertical Sounder

Trees. See also Forests
SCA through, 199–211
snow observation for, 201–2, 202f
study area for, 200–201, 201f

SWE and, 200

TRMM. See Tropical Rainfall Measuring Mission

TRMM Microwave Imager (TMI)
CMORPH and, 44, 57f
CONUS and, 72, 75
CPI and, 74–75, 76f
GPM and, 72
GPROF and, 10, 31f, 65
GSMap and, 31f, 34f, 37f
RNC and, 16
HA93 and, 15
LEO and, 66
LPRM and, 333
NMQ and, 64, 77
POD and, 75–76
PR and, 63, 66, 75
rainfall retrieval, over Indian subcontinent, 27–39, 28f, 29f, 31f, 32f, 37f
RNC and, 18, 20
for surface temperature, 439

TRMM and, 77, 371

TRMM multi-satellite precipitation analysis (TMPA), 441

TRMM Online Visualization and Analysis System (TOVAS), 332

Tropical Rainfall Measuring Mission (TRMM), 3. See also TRMM Microwave Imager
APAS and, 353, 360f
DAS and, 361f
EOFs and, 373
GPROF and, 12, 27
GRACE and, 354
GSMap and, 15
HA93 and, 15
IRS and, 27
Ku-band and, 143
LPRM and, 333
MCS and, 31, 33f
MWRs and, 27
NASA Giovanni and, 331
Nile Basin water storage and, 368, 371–73, 377f
NMQ and, 64, 65–66
NSAS and, 353, 360f
PCA for, 373, 374
PCs and, 373
PMW and, 441–42
PR and, 27, 62, 65, 371
NMQ and, 77
NUBF and, 77
for precipitation, 441
QPEs and, 61
RNC and, 18, 21
for surface temperature, 439
TMI and, 77, 371
Tropical Storm Lee
NASA Giovanni and, 338
NLDAS for, 420–21, 421f, 423f, 424f, 425f
TS. See Threat score
2A12 retrieval algorithm
Bayesian methodology in, 77
CONUS and, 76
ice and, 77
MRE of, 75, 76f
PR and, 77
VIL and, 75
2A25 retrieval algorithm, 27
FOV and, 77
NUBF and, 72
2A12 retrieval algorithm and, 77
Z-R relationships and, 72
TWS. See Terrestrial water storage
Typhoon Morakot, 28

UAS. See Unmanned aircraft systems
UAVSAR, 383
UMGAP. See Upper Midwest Gap Analysis Protocol
UNESCO
Man and the Biosphere Program of, 452
TEM and, 482
Ungauged basins
AMSR-E for, 440
MODIS for, 440
PMW for, 439–48
CREST for, 442, 442f, 445, 445f, 446, 447f
data sources for, 440–42
EnSRF and, 442–44, 445
experimental design for, 444–45, 444t
model for, 442
results and discussion for, 445–48
study basin for, 440, 441f
Universal transverse mercator (UTM), 84, 85
Landsat and, 186
NDVI and, 372
VIIRS and, 186
Yukon River Basin river width and, 134
Unmanned aircraft systems (UAS), 451–60
CHM and, 457, 460f
COA for, 454
COSMOS and, 456–57, 458f
dEM and, 452, 454–55, 455f, 455t, 457
ET and, 456–57
GPS for, 457
history of, 451–52
NDVI and, 457, 459f
study areas for, 452–53, 453f
vegetation classification, 457t
Updated outputs (UP), for CABLE, 312, 313, 313f
Upper Midwest Gap Analysis Protocol
(UMGAP), 390
Upper zone free water content (UZFWC), 321–22
Upper zone tension water content (UZTWC), 321–22
U.S. Bureau of Reclamation (USBR), 95, 99
U.S. Department of Agriculture (USDA)
FAS of, 333
NASA Giovanni and, 331
UAS and, 452
U.S. Drought Monitor (USDM), 338, 339f
U.S. Geological Survey (USGS), 101. See also Earth Resources Observation and Science
InSAR and, 401
river discharge and, 320
VIIRS and, 184
Yukon River Basin river width and, 133, 137
USACE, 165
USBR. See U.S. Bureau of Reclamation
USDA. See U.S. Department of Agriculture
USDM. See U.S. Drought Monitor
USGS. See U.S. Geological Survey
UTM. See Universal transverse mercator
UZFWC. See Upper zone free water content
UZTWC. See Upper zone tension water content
Variable Infiltration Capacity (VIC), 422
VCM. See VIIRS cloud mask
Vegetation coefficients, 108–9, 109f
Vegetation fraction (fVEG), 200
CC and, 207, 207f
TMSCAG and, 203, 207
Vegetation indices (VI). See also Normalized difference vegetation index
ET and, 95–96
EVI, 96, 108
SAVI, 106, 107
Vertically integrated liquid (VIL)
- MRE and, 75
- NMQ and, 63
- POD for, 75
- 2A12 retrieval algorithm and, 75
VI. See Vegetation indices
VIC. See Variable Infiltration Capacity
VIIRS. See Visible/Infrared Imager/Radiometer Suite
VIIRS cloud mask (VCM), 180, 181–82, 184f
VIL. See Vertically integrated liquid
Visible and Infrared Radiometer System (VIRS), 354, 371
Visible/Infrared Imager/Radiometer Suite (VIIRS)
- cloud misclassification and, 180–82, 182t
- EDRs and, 175, 176, 177t, 195
- high-resolution data from, 184
- Landsat and, 184–88, 185f, 186f, 187f, 188f, 189f, 190f
- MODIS and, 176
- observation geometry and, 182–85, 186f
- SCA and, 175–96, 199
- statistical estimates for, 188–89, 189t
- snow algorithm and observations, 179–80
- for snow cover, 175–96
- snow products of, 176–77
- spectral bands of, 178t
- Suomi National Polar-Orbiting Partnership and, 176
- temperature scanning with, 180, 181t
- UTM and, 186
- Vrije Universiteit Amsterdam (VUA), 308, 333
WACMOS. See Water Cycle Multimission Observation Strategy
WAOB. See World Agricultural Outlook Board
Water balance
- concept of, 464f
- in Iran Central Drainage Basin, 463–77
- calibration and sensitivity analysis for, 468, 473t, 474f, 474t
- GPS for, 469
- hydrologic model for, 465–68
- LULC for, 465, 467f, 469f, 470t
- materials and methods for, 463–68
- model calibration for, 471
- study area for, 463–65, 464f
Water Cycle Multimission Observation Strategy (WACMOS), 333
Water resources management, ecohydrology model for, 521–32, 527f
- discussions for, 529–32
- groundwater and, 527f
- methods for, 523–26
NDVI and, 526, 527f
- results for, 526–29
Water surface elevations (WSE), 402f
Water Survey of Canada, 137
Water use efficiency (WUE)
- in bioenergy ecosystems, 479–89
- ET for, 484–87
- materials and methods for, 480–83
- model description and parameterization for, 480–82
- results for, 483–88
- ET and, 91
- future needs for, 488–89
- limitations of, 488–89
- national average, 488t
- as resource allocation measure, 488
WebGIS, 404
WEKA, 266
Wells, InSAR and, 401, 402f
West Gulf River Forecast Center (WGRFC), 320
WetNet Precipitation Intercomparison Projects, 3
WGCV. See Working Group on Calibration and Validation
WGRFC. See West Gulf River Forecast Center
White method, for tamarisk, 99–100, 104–5, 105f, 107f
WinSAR, 399–400
Wisconsin Initiative for Statewide Cooperation on Landscape
Analysis and Data (WISCLAND), 385f, 386t, 392f
WMO-DFIR. See World Meteorological Organization-Double
Fence Inter-Comparison Reference
Working Group on Calibration and Validation (WGCV), 248
World Agricultural Outlook Board (WAOB), 331
World Meteorological Organization-Double Fence
Inter-Comparison Reference (WMO-DFIR), 227
WSE. See Water surface elevations
WUE. See Water use efficiency
Yukon River Basin, river width in, 131–39, 133f
- data and methods for, 133–35, 134f, 135f
- DEM and, 132
- DHG and, 131–32, 134–35, 138, 139t
- distribution of, 136–37
- measurement of, 135–36
- results for, 135–38, 136f, 137f, 138f
- width-discharge relationship, 137–38
Z-R relationships, 69
- 2A25 retrieval algorithm and, 72