Index

<table>
<thead>
<tr>
<th>Abrasive Resistance 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia 319–321, 352, 374</td>
</tr>
<tr>
<td>Catechu 319–321</td>
</tr>
<tr>
<td>Acacia Arabica 464, 465, 469, 471, 472, 473, 474, 475, 476, 477</td>
</tr>
<tr>
<td>Acacia catechu 465</td>
</tr>
<tr>
<td>Acacia jacquemontii 465</td>
</tr>
<tr>
<td>Acacia leucophloea 465</td>
</tr>
<tr>
<td>Acacia nilotica 465</td>
</tr>
<tr>
<td>Acacia senegal 464, 465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acid Resistance 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter venetianus 466</td>
</tr>
<tr>
<td>Acrylamide 2</td>
</tr>
<tr>
<td>Acrylic Acid 2</td>
</tr>
<tr>
<td>Activation energy 322, 323, 335, 336, 343</td>
</tr>
<tr>
<td>Adhesive 320, 321</td>
</tr>
<tr>
<td>Adsorbilization 494, 496</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adsorption continuous condition (column study) 501, 503, 519, 520</th>
</tr>
</thead>
<tbody>
<tr>
<td>diffusion 488, 489, 491, 518, 519</td>
</tr>
<tr>
<td>factors 488</td>
</tr>
<tr>
<td>Freundlich model 489, 493, 514, 515</td>
</tr>
<tr>
<td>isotherm 490, 493–495, 498, 500–502, 504, 409, 512–514</td>
</tr>
<tr>
<td>kinetic 488–490, 492–494, 500, 503, 516</td>
</tr>
<tr>
<td>Langmuir model 489, 490, 500, 514, 516</td>
</tr>
<tr>
<td>mechanism 514, 515, 520</td>
</tr>
<tr>
<td>Thermodynamic parameters 489, 490, 516</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aegle marmelos 465</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agave americana 463</td>
</tr>
<tr>
<td>Agricultural wastes 466</td>
</tr>
<tr>
<td>Agro-climatic factors 408</td>
</tr>
<tr>
<td>Albumins 377, 379, 397</td>
</tr>
<tr>
<td>Alcanivorax borkumensis 464</td>
</tr>
<tr>
<td>Alginate 564, 593–594</td>
</tr>
<tr>
<td>Algae 593</td>
</tr>
<tr>
<td>Azotobacter 593</td>
</tr>
<tr>
<td>Polyethylenimine 593</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pseudomonas 593</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure 564</td>
</tr>
<tr>
<td>Allelv variation 393</td>
</tr>
<tr>
<td>Altitude 408</td>
</tr>
<tr>
<td>Alzheimer's disease 271</td>
</tr>
<tr>
<td>Amino acid 381, 384, 398, 399</td>
</tr>
<tr>
<td>Ammonium persulphate 2</td>
</tr>
<tr>
<td>Amylopectin 83, 85, 463</td>
</tr>
<tr>
<td>Amyloose 567, 83, 463</td>
</tr>
<tr>
<td>Structure 568</td>
</tr>
<tr>
<td>Anacardiaceae 465</td>
</tr>
<tr>
<td>Anionic polymerization 176</td>
</tr>
<tr>
<td>Anogeissus latifolia 464, 465</td>
</tr>
<tr>
<td>Anogeissus pendula 465</td>
</tr>
<tr>
<td>Anonaceae 465</td>
</tr>
<tr>
<td>Antibacterial 464</td>
</tr>
<tr>
<td>Antifungal 464</td>
</tr>
<tr>
<td>Antimicrobial films 68–75</td>
</tr>
<tr>
<td>Antioxidants 23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applications agriculture 312</th>
</tr>
</thead>
<tbody>
<tr>
<td>biomedical 309</td>
</tr>
<tr>
<td>food 311</td>
</tr>
<tr>
<td>industrial 311</td>
</tr>
<tr>
<td>various applications 292–295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applications of Chitin and Chitosan 143</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabica 317 acid complex 319, 343, 344</td>
</tr>
<tr>
<td>salt complex 344</td>
</tr>
<tr>
<td>Arabidopsis thaliana 463, 477</td>
</tr>
<tr>
<td>Arginine 594–596</td>
</tr>
<tr>
<td>Citrulline 595</td>
</tr>
<tr>
<td>Arthropoda 466</td>
</tr>
<tr>
<td>Artificial intelligence 438, 442</td>
</tr>
<tr>
<td>Astragalus gummifer 464, 465</td>
</tr>
<tr>
<td>Astragalus sinicus 471</td>
</tr>
<tr>
<td>Astragalus spp. 464</td>
</tr>
</tbody>
</table>

605
Azadirachta indica 465, 469, 471, 472, 473, 474, 475, 476, 477
Azo bis(isobutyl)nitrite (AIBN) 2

Bacillus megaterium 464
Bacillus mycoides 464
Bacillus spp. 466, 474
Bacillus subtilis 476

Bacterial polymers
Bacterial species
acetobacter spp.: cellulose, 292, 295, 297
agrobacterium spp.: curdlan, 292, 297
alcaligenes spp.: levan, 293, 298
anuerinibacillus spp.: glycoprotein, 293, 299, 298
bacillus spp.: hyaluronic acid, polyglutamate, peptidoglycan 293, 299
francisella spp.: tolin 293
pseudomonas spp.: dextran, gellan, polyhydroxyalkonates 292, 293, 294
xantomonas spp.: Xanthuan 293, 298

Band gap 440–443, 445, 446, 448, 451, 452

Barrier properties
PLA 199–203, 211–212
Base Resistance 14
Basis set 441, 442, 451–453
Bauhinia racemosa 465
Benzophenones 468
Benzoyl Peroxide 2
Beta vulgaris 469
Beta-glucans 463
Biocompatible 462, 466, 478
Biodegradable 462, 463, 469, 478
Biodegradable polymers 170
Biodegradation, 1, 17, 18, 256
PLA 206–208
Biofibers 225

Biomedical applications of chitosan
Antimicrobial Properties 154–155
Antioxidant Property 145
Artificial Kidney Membrane 147–148
Artificial Skin 152
Blood Anticoagulants 151–152
Drug Delivery Systems 149–151

Enzyme Immobilization 144–145
Film-forming Ability of Chitosan 155
Function of Plasticizers in Film Formation 155–156
Gene Therapy 144
Hypocholesterolemic Activity 145
In Wastewater Treatment 156–157
Membranes 156
Miscellaneous Applications 152–154
Wound-healing Accelerators 145–147

Biomolecules 438, 439, 442–444, 446
Biopolymers 169, 377
Biopolymers and drug delivery 560
type of biopolymer 561
Biotechnology 462
Bixaceae 465
Bombacaceae 465
Bombax ceiba 465
Boswellia serrata 465
Brassica oleracea 469
Bridging mechanism 120
Brownian motion 318
B-serum 413
Buchanania latifolia 465
Burseraceae 465
Butea monosperma 465

Caesalpiniaceae 465
Calendering 429
Carbon dioxide permeability
PLA 200–201
Carbon emissions 463
Carica papaya 464, 465, 469, 472, 473, 474, 475, 476, 477
Caricaceae 465
Carragenan 563
Cartilage 20
Cassava 464
Cassia seeds
abbreviata 270
alata 270
angustifolia 270, 272
brewsteri 270
corymbosa 270
fistula 270
fistuosa 270
grandis 270, 272, 278
javahikai 270, 273, 275
javanica 270, 272, 283
laevigata 270
marginata 270, 280–283
marilandica 270
multijuga 270
nodosa 270
obovata 270
occidentalis 270, 286
ovata 270
pleurocarpa 270
podocarpa 270
pudibunda 270, 286
renigera 270
reticulata 270
saligna 270
siamea 270, 286
sophera 270
spectabilis 270
surattensis 270
tora 270, 276
Customized matrix 122, 123
Catabolism 10
Cationic polymer 577
Cationic polymerization 176
CD44 24
Ceara rubber 405
Cellulose 7, 8, 462, 561
 Antimicrobial packaging 76
 Cellulose Acetate 563
 Cellulose Acetate Butyrate 563
 Chemical structure 60
 Hydroxyethyl cellulose 562
 Hydroxypropyl cellulose 562
 Hydroxypropyl methylcellulose 562
 Modifications 70
 Sodium carboxymethyl cellulose 562
Cellulose esterification 497–501
 microfibrils 486
 Modification by activation with N,N’-carbodiimidazole (CDI) 504,
 506–509, 511, 513, 515,
 517, 518
 Modification with Diisocyanate (MDI)
 503–505, 508, 517, 518
Cellulosics 2
Ceratonia siliqua 464, 465
Cereals 463
Ceric Ammonium Nitrate 2
Ceric Ammonium Persulphate 2
Cesalpiniaeae 465
Characterization 318, 319, 325, 345, 354
 Elemental Analysis 111, 112
 FTIR 112, 113, 114
 Grafted Polysaccharides 110
 Intrinsic Viscosity 110, 111
 Scanning Electron Microscopy (SEM) 114, 115
 Thermo gravimetric analysis (TGA) 115, 116
Charge transport 440, 447, 449, 450
Charge-transfer complexes 438
Chemical Initiator 2, 3
Chemiluminescence 17
Chitin 462, 466, 467
 Chitin-Chemical modification 134
 Composition of chitin, chitosan and cellulose 132–133
 Sources of chitin 131
Chitinase 466
Chitosan 466, 467, 470, 564, 578–592
 Charge density 580
 Chemical modification
 Chemical structure 60
 Chitin 578
 Chitosan Crosslinking 142
 Coacervation 580
 Degree of deacetylation 580
 EDC 585
 Green fluorescence protein 588
 HeLa cells 585
 MCF-7 cells 585
 Modifications 63–67, 70, 73
 Proton sponge effect 585
 Self-assembled 579
 Structure 565
 Transfection mechanism 582
Chloramine 18
Chloroamide 18
Chondroitin sulfate 5
Chromium species 281, 282
Clavibacter michiganensis 475
Clivia miniata 463
CMS-g-PAM matrix 124
13C-Nmr 1, 8, 9
Cochlospermum religiosum 465
Collagen 596
 Atelocollagen 597
 Telopeptides 597
Combretaceae 465
Commiphara wightii 465
Commiphora abyssinica 464, 465
Composite materials
 PLA 209, 215
Composite 1, 16, 17, 18, 235, 236, 237, 251
Composition 132–133
Compostable 463
Composting
 PLA 207
Compressive Strength 17
Conducting species 317, 323, 324
 polymer 318, 319, 333
Controlled release systems 122, 123
Controlled release 468, 469
Coordination/Insertion
 polymerization 176, 177
Corn-Starch 18
Cover crop 408
Crystalline Index 10, 11
Crystallinity 7, 10, 11
Crystallinity degree
 PLA 195
Crystallization half time
 PLA 195–196
Cysteine 383, 395
Defects 322, 317
Degradation
 abiotic 203–204
 biotic 203
 PLA 203–208
Density
 amorphous PLLA 190
 crystalline PLLA 190
 PDLA 190
 PLA 190
 PLLA 190, 197
Depolymerization of chitin and chitosan
 Chemical Methods 133–140
 Enzymatic Methods 140–141
 Graft Copolymerization 141–142
 Physical Methods 140
Dermatan sulfate 5
Dexon 180
Dextran 567
 Structure 567
Die Swell 245
Diffusion Exponent 15
3,5-dimethyl-1,4-dioxane-2,5-dione 188
Diphenylcarbazide (DPC) method 281
Diseases of rubber
 abnormal leaf 408
 control measures 408–410
 corynespora leaf 408
 gloesporium leaf 408
 leaf 408–409
 pink 408
 powdery mildew 408
 root 408
 stem 408
Disulfide bonds 380, 381, 384, 387, 395
Double helix 447
DRC of latex 414–416
Drug Delivery 1, 2, 15, 18
DTA 1, 12
DTG 1, 12
Dye removal 275–277
Eco-friendly 462
Electrical conduction 318, 322, 324, 325, 328
Electrical Stimulus Sensitivity 14
Electroactive 317, 318, 322, 328, 342, 359, 374
 biopolymer 374
 ion conducting polymer
 polymer 317, 318, 374
Electron tunneling 442, 448, 449
Electronic conduction 439–441, 447, 448
Electrophoresis one-dimensional 383, 387, 394
Electrophoresis two-dimensional 380, 383, 387, 394, 395
Electrospinning 28
Electrostatic attraction 278, 282–283
Elongation At Break 17
Endosperm 464
Enzymes 397
Enzymatic degradation
 PLA 206
Eocene 467
ESR 17
Ethyl Methacrylate 2
Ethylene-acrylic acid 468
Exciton 438, 441, 442
Extracellular matrix 7
Extracellular polysaccharides or exopolysaccharides
 alginate 292, 295
 capsular polysaccharide 298
cellulose 292, 295
chitosan 292, 297
curdlan 292, 297
dextran 292, 297
gellan 292, 297
hyaluronic acid 293, 298
kefiran 298
levan 293, 298
n-acetyl heparosan 297
O-polysaccharide 298
Xanthan 293, 298
Extrusion 430

Fabaceae 465
FAS-KPS 2
Feedstocks 463
Fenton reaction 23
Fibre
 PLA 209, 214–215
Fickian Mechanism 15
Fire stability
 PLA 214
Flame Resistance 2
flammability 252
Flocculants 16
Floccs 271, 275–276
Fossilization 466
Fossils 466
Free radical mechanism 107, 108, 109
Free radicals 12
Frey-Wyssling particles 413
FTIR, 1, 8, 9, 18, 253
 PLA 191–192
Fuel Cell 62, 63
Fusarium 470
Fusarium oxysporum 476
Fusarium verticilloides 475

Galactomannan 272, 278, 286
Gamma irradiation 16
Gamma Radiations 4
Gas permeability
 PLA 199–201
Gas selectivity
 PLA 201
Gel plantings 467
Gelatin 570, 592–593
 Microparticles morphology 570
 Spermidine 592
Spermine 592
 Tat peptide 593
 Ultrasound irradiation 592
Gene therapy 575
Genome 396, 397
Genomics 399
Geosphere 467
Glass transition temperature
 PLA 192
Gliadin(s) 378, 381, 383–385, 387, 394–399
Globulins 377, 379, 397
Glutamine 383, 384
Glutelin 378
Gluten 378, 379, 381, 384, 388, 392, 398, 399, 466
Glutenins 377–380, 384, 387, 394, 397
Glycolic acid 171
 Chemical synthesis 171, 172
 Fermentation Process 172
Glycolide 178
Glycosaminoglycans 4
Graft Copolymerization 1, 4, 8, 9, 15
Graft Copolymers 1, 4
Grafted polysaccharides
 Flocculant for water treatment 119
 Viscosifier 117, 118
Grafting 101
 ceric ammonium nitrate
 (CAN) 102, 103
 Free radical grafting 102
 free radical initiator 102, 103
 microwave assisted synthesis 102
 microwave initiated grafting 102, 107
 Percentage grafting 101
Green book 418
Green commodity 432–433
Green Composites 16
Greenhouse 467
Guar gum 566, 273
 Structure 566
Guayule rubber 404, 405
Gum
 Karaya, Ghati, Guar 319, 320
 Tragacanth 319, 320
Gum Ghatti 18

HA Receptors 25
Half surface coverage 120
Hardness 17
HARE 24
Harvesting, see tapping
Heat capacity change
PLA 193
Hemicellulose 228
Heparan sulfate 5
Heparin 5
Herbicides adsorption 505, 506, 512–515, 519
Hevea brasiliensis 403, 407
Hexamethylene tetramine 2
High Molecular Weight (HMW)
t (HMW) subunits 377, 379, 384, 387, 392–394, 397, 399
High Molecular Weight (HMW) genes 393
Homopolymerization 3, 6, 7
Homopolypeptides 442–444
Hopping conductivity 441
Hordein(s) 380, 384, 387, 396, 397
HPLC 394, 397, 22
Hyaladherins 25
Hyaluronan 3
Hyaluronan Synthases 8
Hybridization 238, 248
Hydrogel 16 344, 345, 374
Hydrogen peroxide 21
Hydrolysis
PLA 204–206, 208, 210
Hydronium 323, 324
Hydroquinone 108
2-hydroxypropionic acid 184
Hydroxyl radicals 13
Hypochlorous acid 17

IL 25
Impedance 329–332, 334, 335, 352–354, 356, 361, 362
India rubber 404
Inflammation 19
Initiator
free radicals 281, 286
redox 273, 278, 280, 286
Introns 395
Ionic groups 427
ISO specifications
concentrated NR latex 416
technically specified rubber 420
Isoelectric focusing (IEF) 395
Isoelectric points (pI) 395
Isoprene rubber 404
Jar test 121
Keratan sulfate 5
Kinetics
intra-particle diffusion model 284
pseudo-second-order kinetics 278, 284–285
second order kinetics 283
Lactic acid
Chemical synthesis 171, 172
D(-)-lactic acid 170, 171
Fermentation Process 172
L(+)lactic acid 170, 171
production process 184–185
stereoisomer 184
Lactide 187–190, 174
Lamellae surface energy
PLA 197
Langmuir model 278, 283, 285
Lannea coromandelica 465
Larix occidentalis 464, 465
Latex
centrifuging 432–433
chemistry 413
composition 413
concentration 414
creaming 414
Field coagulum 413
fractional coagulation 418
meaning 405
particles 413
pH 413
preservation 413–414
putrefaction 413
sp. Gravity 413
spontaneous coagulation 413
stimulant 411
thread 406
vessels 407
Latitude 408
Leucaena leucocephala 465
Leuconostoc mesenteroides 466
Lignin 228
Lignocelluloses 462
Linkage groups 396
Lipid Barrier 77
Lipoplex 577
Lolium multiforum 471
Loss Modulus 240
Low cost adsorbents 489, 490, 492, 493
Low Molecular Weight (LMW) t (LMW) subunits 378, 380, 387, 393, 394, 396, 397
Low Molecular Weight (LMW) genes 395
Low-density polyethylene 468
Lubricant 27
Luminal 17
Lutoid particles 413
Lysine 381, 398, 399

Macromolecules 462
MALDI/MS 396
Mandioca 464
Mangosteen 319, 320, 366–370
MAPP 236, 249, 252
Mechanical properties 1, 12, 17, 18
PLA 197–199
Meliaceae 465
Melt enthalpy
PLA 195
Melt Rheology 242
Melting temperature
PLA 197
Metal sorbents 277
(CJ-g-PAA) 284, 285
Cassia grandis seed gum-graft-poly(methylmethacrylate)
(CG-g-PMMA) 278, 279
Cassia marginata seed gum-graft-poly(methylmethacrylate)
(CM-g-PMMA) 280–283
Metalaxyl 474, 476
Metallo-protein complexes 446
Metasequoia 467
Methacrylic Acid 2
Methionine 383
Methods
biosynthesis methods 305
conventional 302
Tailor-made methods 307
Methyl Methacrylate (MMA) 1, 2
Methylacrylate 2
Mexon 180
Microfibril 229
Microscopy 325
Microwave 280, 281, 284
Microwave Radiations 4
Miliusa tomentosa 465
Mimosaceae 465
Miocene 467
Miscellaneous polymers
1,6-anhydromuropeptides 295, 301
amphipathic polymer 294, 301
glycerophosphate 294, 301
humic polymers 294, 301
O-specific haptenic polymer 295, 301
ribitol phosphate polymers 294, 301
sialic acid polymers 294, 301
stilbene polymer 294, 301
teichoic acid polymer 294, 301
Mixing 429
Modified cellulose fibres 491, 497
Moisture Absorbance 13
Molecular electronics 438, 439, 447, 453, 454
Molecular lithography 449
Monocryl (Poliglecaprone 25) 180
Moringa oleifera 464, 465, 469, 472, 473, 474, 475, 476, 477
Moulding 430
Mulches 467, 468
Myeloperoxidase 17

N, N' Methylene bis(acrylates) 2
N/P ratio 577
Nanocluster 351–355, 359, 365–367, 370, 374
Nanocomplex 317, 351, 352, 354, 358
Nanocomposites
PLA 209–210
Natural polymers 461
Natural rubber
biosynthesis 412–413
blends 423
bud-grafting 408
chlorinated 424
done 408
crepe 418
cultivation 407
cyclized 425
epoxidised 426
graft copolymerized 426
history 404
hydrogenated 424
mastication 406
plantation 406–407
ribbed smoked sheet 415
stimulant 411
thermoplastic 423
tree 407
turgor 410
vulcanization 406
Neutrophilic granulocytes 19
Nitrogen monoxide 21
Nitrogen permeability
 PLA 201
NMR spectroscopy 16
Non-Fickian Mechanism 15
Non-Newtontian 244
Nonviral vector 576
Nucleic acids 461
Nutrient recycling 408
Nylon 461

Oligocene 467
Organic vapour permeability
 PLA 202–203
Ostwald de-Waalle 245
Oxidative Degradation 11
Oxygen Index 260
Oxygen permeability
 PLA 199–201

Packaging 211–214,
 active 213–214
 antimicrobial 214
Para rubber 404
Particle-polymer-particle complex
 276, 277
Particles morphology 563
Pathogen-related 467
PCR 392
Pectin 565
 Structure 566
Pentosans 463
Peptides 462
Percentage Grafting 11, 12
Permitivity 331
Permeselective (membrane) 61, 63, 64
Peroxynitrite 18
Petrochemicals 463
Phenylalanine 383
Photodegradation 254
PHPZC 284
Phytoalexins 467
Pinaceae 465
pK value 7
PLA polymorphism
 α 193–194
 α' 193
 α' 194
 β 194–195
 γ 194
Plasmopara halstedii 475
Plastic films 467
Plasticization
 PLA 198–199
PMA 22
Poly (lactic-co-glycolic acid) 179, 180
Poly aluminium chloride(PAC) 271,
 274–275, 278
Poly(acrylamide) 271, 273, 274, 276
Poly(lactic acid)
 Applications 180
 High molecular weight PLA 175, 177
 Poly-condensation 174
 Polymerization 173
 Star shaped 174, 175
Polyacrylamide grafted carboxymethyl
 starch (CMS-g-PAM) 103
Polyamides 464
Polybutylene 468
Polycondensation
 PLA 186–187
Polyester
 poly-(R)-3-hydroxybutyrate
 294, 301
 polyhydroxy-3-butrate 294, 300
 polyhydroxyalkonates 293, 300
 polyhydroxybutyrate-co-
 hydroxyvalerate 300, 301
 polyhydroxyoctanate 294, 301
 polyphosphate(PHB/polypropolycomplexes
Polyesters 464
Polyethylene 461
Polygalactin 180, 910
Polyglycolic acid
 Applications 180
 Polymerization 178
Polyhydroxyalkanoates 569
 Structure 569
Polyhydroxyalkanoate 478
Polyhydroxybutyrate 464
Polymer 317–328, 330–335, 374
electron conducting 318
ferromagnetic 318
ion conducting 318
superionic 323, 324, 328, 330, 374
synthetic 317, 318, 324, 330
Polymer electrolyte membrane (PEM) 61, 62, 63
Polymeric nanoparticles preparation 560
Polymers gluten 384, 392, 393, 398, 399,
glutelin 377, 388, 392, 393, 395
Polymorphism 384, 394
Polypeptide 438–446
Polyplex 577
Polysaccharide 319, 320, 329, 342, 343
Polysaccharides 1–18, 461
Polysaccharide Homopoly saccharide 130
Structural polysaccharide 130–131
Polyurethane 461
Porous structure of cellulose 487, 488, 491
Processing
PLA 208–210
Prolamins 377, 379–381, 383–385, 394,
396, 399
Proline 383, 384
Prosopis cineraria 465
Prosopis julifera 465
Protein
glycoprotein 293, 299
peptidoglycan 293, 299
polyglutamate 293, 299
tolin 293, 299
Protein-polysaccharide
lipopolysaccharides
O-specific polymers of
lipopolysaccharide 293, 300
peptidoglycan-polysaccharide 293, 299
Proteins 461, 462
primary structure 438
quaternary structure 438
secondary structure 438
tertiary structure 438
Proteoglycans 26
Proteomics 395, 399
Prototype 261, 262
Protonic 323, 324, 328, 330, 374
Pseudomonas 474, 478
Pseudomonas fluorescens 476
Pseudomonas pseudomallei 466
Pseudomonas putida 464
Pseudoplastic 244
Ralstonia eutropha 464
Ralstonia spp. 464
Rate Of Polymer Relaxation 15
Reactive extraction 173
Reactive extrusion 92
PLA 189–190
Reactive nitrogen species 21
Reactive oxygen species 12
Refractive index
PLA 190–191
Regeneration of saturated fibres 490, 493,
503, 519, 521
Regenerative Medicine 28
Reinforcing Agents 1, 16
Relative Rate Of Diffusion 15
Relaxation 330–332
Renewable 462
RFLP 396
RHAMM 24
Rheumatic diseases 20
Rhodococcus ruber 464
Ring opening polymerization 175
Ring-opening polymerization (ROP)
PLA 186–188
RMA 418
Rosin 464
Rubber products 431–432
Rubber yielding plants 404
Rutaceae 465
Saccharum spontaneum 18
Salt Resistance 13
Scanning tunneling microscopy 449
Scherrer Equation 10
Sclerospora graminicola 471, 475, 476
Sclerotinia 470
Secalin(s) 380, 385, 387, 396
Second order rate constant 13
Seed coatings 467
SEM 1, 8, 10, 16, 17, 18, 236, 239, 247, 281,
284
Semi-empirical 441, 442
Skin 28
Smoke house 415, 417
Soil Burial 1, 18
Soil conditioning 467
Solar cell 317, 360, 364–370, 371
material 317
Solubility
 PLA 190
Solvent exchange treatment 497
Solvent structure 444, 445
Soy Protein Concentrate 18
Soymida febrifuga 465
Sphacelothea reiliana 476
Spherulite growth rate
 PLA 195–196
Starch 568, 462
 application 85
 complex 84
 gelatinization 89
 melting 89
 plastics 86
 reactive extrusion 92
 structure 83
 thermoplastic 87, 88
Starch-polyvinyl alcohol 468
Statistics of
 rubber consumption 421
 rubber production 404, 421
Sterculia urens 464, 465
Sterculiaceae 465
Steric stabilization 120
Storage protein 377–381, 397, 399
Stress-strain 249
Superabsorbent 2, 16
Superionic 323, 324, 328, 330, 374
Superoxide Anion Radicals 20
Surfactant treated cellulose 491, 494–496
Sustained Drug Delivery 15
Swelling 2, 13
Synthesis of CMS-g-PAM 104, 105
 Effect of initiator concentration 106
 Effect of monomer concentration 107
 Mechanism 106
Synthetic polymers 1, 15, 461, 462
Tapping of rubber
 cut 410
 frequency 410
 interval 410
 panel dryness 410
 process 410
 systems 410–411
TEMP oxidation 495, 496
Tensile Strength 17
TGA 1, 11, 12, 241
TGF-beta 25
Thermal degradation
 PLA 204
Thermal Stability 2, 5, 16, 17, 18
Thermoplastic 462
Threonine 381
Tissue culture 408
Titanium 468
Traditional delivery systems 121, 123
Transgenic 477
Triacylglycerols 463
Trichoderma spp. 474
Tryptophan 383, 399
Tyrosine 383

Vinyl Acetate 2
Viral vector 576
Viscoelasticity 26
Viscoprotection 27
Viscosimetry 22
Viscosupplementation 28
Viscosurgery 27

Wastewater treatment 121
Water vapour permeability
 PLA 201–202
Waterproofing 405
Wet milling 463
Wheat gluten 570

Xanthan gum 271
XRD 1, 8, 10, 11
Xylans 463

Zhang et al 271
Zirconium 468