Index

A
Activities
  assigning managers to, 74–75
  critical, 206–207
  defined, 69–70
  describing, 73–74
  detail levels, 71–74
  duration, 72, 97–99
  without end points, 71
  in compression process
    duration estimate, 133
    favorable cost trade-offs, 133
    identification, 129–131
    managers' assessment, 131–132
    selection, 132–133
    trade-off evaluation, 132
    managers' role, 131–132
    missing, 119
    multiple, 86
    non-working days, 93–94
    time consuming, 70
    time estimation, 91
Activity-based costs, 124–127, 218–219
Alltel, 9
Armstrong, Louis, 8
Assumptions, in charters, 58
Authorization, lines of, 4
B
Back-scheduling, 95–96, 142
Background, in charters, 53
Backward pass calculations, 200–202
Berra, Yogi, 7
Blanchard, Kenneth, 29
Budgets
  activity-based costs, 218–219
  breaking down, 217–218
  cash flow analysis, 220–221
  charter sections covering, 57–58
  cost control, 219–220
  cross-classified, 221–222
  developing, 17
  organizing, 217–222
  planning process and, 143–144
  Compression process
    activities
      duration estimate, 133
      favorable cost trade-offs, 133
      identification, 129–131
      manager's assessment, 131–132
      selection, 132–133
      trade-off evaluation, 132
      advantages, 142–143
      early penalty rate, 128–129
      late penalty rate, 128–129
      Melbourne Plant example, 133–142
      steps, 128–133
    trade-off concept, 123–128
  Constraints, in charters, 58
  Commitment, 15, 151
  Communication, 45–46
  Complexity concerns, 177
  Composite relationships, 196–198
  Comprehensive approach, 213–215
C
Cash flow analysis, 220–221
Caterpillar, 9
Chartering meetings, 60–61
Charters
  advantages of, 47–48
  components of, 49, 52–58
  development process, 58–62
  purpose of, 47
  stakeholders participation in, 49
  Coaching, 15–16
  Coca-Cola Company, 9
  Commitment, 15, 151
  Communication, 45–46
  Complexity concerns, 177
  Composite relationships, 196–198
  Comprehensive approach, 213–215
  Costs
    activity-based, 124–127, 218–219
    concerns, 177
    controlling, 219–220
    expectations, 57
    opportunity, 125
    project-based, 125–128, 218–219
    total, 127
    tracking, 223–224
Critical paths
- compression process and, 129–130
- critical activities vs., 206–207
- defined, 114
- finding, 114–118
- forward pass scheduling in, 111–113
- Melbourne Plant example, 116–118
- schedule revision, 118–121
- schedule validation, 118–121
Cross-classified budgets, 221–222

Customers
- communication failures with, 45–46
- imposed penalties from, 123–126
- satisfying, 21–22
- as stakeholders, 47

D
- Data entry errors, 120
- Date, in charters, 53
- Decision making, 151
- Delta Air Lines, 9
- Details, level of, 71–74
- Development process, 58–62
- Disney, 9
- Draft charters, 60–61
- Draft number, in charters, 53
Duration estimations
- case studies, 94–95, 102–103
- Melbourne plant example, 107–109
- normal duration and, 97–99
- potential issues in, 106–107
- process, 99–102
- scheduling approaches, 94–97
- team member commitment to, 104–105

E
- Earliest possible completion time (EPC), 200–203
- Earliest possible finishing time, 96
- Early penalty rate in, 128–129
- Early savings rate, 57–58
- Education, 9
- Experience, 8

F
- Facilitators, 59–61
- Finish-to-start with lag, 192–194
- FirstStep process
  - activities identification, 69–71
  - case study, 66–67
  - components, 16–17
  - detail level determination, 71–74
  - overview, 65
  - WBS in, 67–69
- Force-fitting schedules, 95–96
- Ford, Henry, 32
- Forward pass scheduling
  - advantages, 142–143
  - calculations, 111–113, 199–207
  - function, 121
- Forward scheduling, 96–97, 142–143
- Free slack, 205–206
- Fujitsu, 9

G
- Generalized precedence diagramming
  - advantages, 191
  - composite relationships, 196–198
  - finish-to-finish with lag, 195–196
  - finish-to-start with lag, 192–194
  - start-to-start with lag, 194–195

H
- Human nature, 4

I
- In Search of Excellence, 11
- Inflexibility concerns, 178–179
- Ingersoll Rand, 9
- Intensive training, 15
- Interviews, LRC, 186, 188

K
- Katzenbach, Jon, 29
- Kimberly Clark, 9
- Knowledge depth, 8

L
- Lag
  - finish-to-finish with, 195–196
  - finish-to-start with, 192–194
  - start-to-start with, 194–195
- Late penalty rate, 57–58, 128–129
- Latest allowable completion time (LAC), 200–202
- Latest allowable time, 96
- Leadership, 33
- Least allowable start time (LAS), 200–202
- Linear responsibility chart (LRC), 79
  - creating, steps in, 186, 188–189
  - function, 186
  - interviews, 186, 188
  - procedures, 189
  - sample, 187
  - signatures on, 189
- Lombardi, Vince, 8
- Long-duration projects, 72
- LRC. See Linear responsibility chart (LRC)

M
- Manufacturing process case study, 233–234
- Marriott, 9
- Micro-management, 72–73
- Multiple organization projects, 185–189

N
- Narrative description, 91–92
- Networks
  - case study, 82
  - generalized precedence diagramming and, 191–198
  - Melbourne Plant example, 90–92
  - overview, 81, 83–84
  - project diagram, 84–90, 119–120
- Node diagram. See Project network diagram
- Non-working days activities, 93–94
Index

O

Objections
  case study, 173–175
  common types, 176–179
  reasons for, 175
  responding to, 175–179
Objectives, in charters, 54–55
One Minute Manager Builds High-Performing Teams, The (Blanchard), 29
Operating procedures, 185–189
Operational teams, 3
Opportunity costs, 125
Overload anticipation
  comprehensive approach, 213–215
  overview, 212–213
  resolving, 215–216
  short-cuts to, 213
Objectives, in charters, 54–55
One Minute Manager Builds High-Performing Teams, The (Blanchard), 29
Operating procedures, 185–189
Operational teams, 3
Opportunity costs, 125
Overload anticipation
  comprehensive approach, 213–215
  overview, 212–213
  resolving, 215–216
  short-cuts to, 213

P

Penalties, 125–126
Performance
  basic dimensions, 21–22
  key dimension, 27–28
Peters, Tom, 11
Planned activity duration, 97–99
Planning process
  analysts use in, 38
  benefits of, 27
  budgeting, 143–144
  building on, 16–17
  cross-functional team-based, 33, 35–38
  efficiency maximization, 37–38
  elements of, 17
  functional area representative approach, 36–37
  one-person approach, 35–36
  resource planning in, 143–144
PMO. See Project management office (PMO)
Precedence relationships
  chart construction, 84–85
  policy/preference reasons for, 88
  technical reasons for, 88
Precedence relationships in, 84–85
Problem solving, 151
Product development case studies, 235–238
Project components, 53
Project control process
  approaches to, 150
  case study, 147–149
  function, 149
  meeting phases, 150–152
  Melbourne Plant example, 152–165
  requirements, 149–150
Project deliverables, 53
Project management
  acquiring skills for, 9–10
  case study, 5–6
  challenges, 3–4
  credentials, 9
  failures, 10–11
  human nature and, 4
  ineffective cycles in, 23–25
  lines of authority, 4
  qualifications, 4, 7–9
Project management office (PMO)
  characterization, 171
  function, 226
  need for, 225
  purposes, 226–227
  requirements, 229
  responsibilities, 227–229
Project management system design
  case study, 167–170
  key questions, 171–172
  PMO approach, 171
  structured approach to, 167–168
Project managers
  appointment of, 38–41
  charter description of, 56
  construction industry, 47–48
  job description for, 39
Project name, 52–53
Project network diagram
  analysis, 87–88
  defined, 84
  development, 87–88
  examples, 85–87
  multiple activities and, 86
  narrative description, 91–92
  precedence relationships in diagram, 84
  types of, 88–89, 91
  restricted resource, 89
  time flows in, 86
Project Success Method. See also specific concepts
  applying, 181–182
  benefits, 181–182
  benefits of, 10–11
  defined, 10
  management processes, 16–19
  objections to, 173–179
  power of, 9
  worry curve shifts with, 27–28
Project-based costs, 125–128, 218–219
Project-planning analysts, 38
Projects
  multi-organizational, 79
  overhead, 125
  phases, 53
  processes versus, 2
  sponsor, 55
  status, 151–152
  teams, 3
  time considerations, 72

Q

Qualifications, 4, 7–9

R

Radio Shack, 9
Resource planning
  availability increases, 215
  case study, 210–212
  overload anticipation, 212–216
Resource planning (Continued)
overview, 143–144
purpose of, 209–210
workload decreases, 215–216
Resources
defined, 209
usage tracking, 223–224
Risks, charter, 58

S
Schedule calculations
activities vs. paths in, 206–207
assumptions, 199–200
backward pass, 200–202
slack interpretation, 202–206
Schedules
developing, 17
revision, 118–121
updating, 151
validation, 118–121
Scope, in charters, 53
Service provider case study, 234–235
Short-duration projects, 72
Slack interpretation, 202–206
Stakeholders, 55–57
Start-to-start with lag, 194–195
Stovepipe planning, 36
Strategic compression, 96
Success
essential ingredients for, 14–16
factors maximizing, 18
rate of, 13

T
Team building
case studies, 30–31, 33–35
essence of, 32
leadership and, 33
opportunities, 36
Team work, 29, 31–32
Teams, 43
charters and, 49
construction industry, 47–48
differences among, 3
first tasks, 47
guiding, 39
members, 56–57, 104–105
organizing, 29
planning process and, 33, 35–38
pressures on, 26–27
scope creep example, 43–46
typical project scenario, 22–25
WBS by, 68–69
Technology case studies, 231–233
Time
activities consuming, 70
charter development, 60
concerns, 176
cost versus, 123–128
earliest possible finishing, 96
expectations, 57
latest allowable, 96
management, 4
performance and
Total costs, 127
Total slack, 202–205
Trade-off concept, 123–124
TRW, 9
Turner Broadcasting, 9
Typical project
deadlines, 24
defined, 22
honeymoon period, 23–24
Project Success Method applied to,
25–26
start of, 23
surviving, 24–25
worry curve in, 23, 26

W
Wisdom of Teams, The (Katzenbach), 29
Woods, Tiger, 8, 14–14
Work breakdown structure (WBS)
development, 67–68, 78–79
Melbourne plant example, 75–78
outline format, 70
pyramid format, 68
Worry curves, 23, 26–27