Index

A
ACI 318, 158, 318, 330, 340
Advanced Analysis, 197
AISC Code of Standard Practice, 50–51, 123, 277
AISC Specification, 1–3
AISC Steel Construction Manual, 1, 3–5
AISC Web Resources, 4–5
Alignment Charts, 133–138, 276
Allowable Strength Design (ASD), 1, 17–18
American Welding Society (AWS), 378
Amplification Factor, 254, 259–293, 484
Amway Center, 48
ANSI/AISC 341, 38, 484
ANSI/AISC 360, 1
ANSI/AWS D1.1, 69
Aon Center, 15–16
Approximate Effective Length, 134–135
Area,
 Effective Net, 72, 77, 85–93, 388, 455
 Gross, 77–78
 Influence, 32–44
 Net, 72, 77–85, 195, 388
 Tributary, 32–33, 40–44
ASCE 7, 23, 28, 31–39
ASTM,
 A6, 55–58
 A36, 62–64
 A53, 64
 A108, 69
 A242, 65
 A307, 67–68
 A325, 67–68
 A370, 53
 A490, 67–68
 A500, 64
 A501, 64
 A514, 65–66
 A529, 64
 A572, 64
 A588, 65
 A618, 64–65
 A847, 65
 A852, 65–67
 A913, 65
A992, 60–62, 65
F1852, 67–68
F2280, 67–68

B
Base Plate, 4, 51, 157–159, 443–449, 500
Base Shear, 37
Beam and Column Construction, 11–12
Beam Line, 294–296, 454
Beam-Columns, 7–10, 112, 252–306
 Composite, 352–356
 Design Tables, 282–284
 Effective Axial Load, 279–281
 Interaction, 253, 255–259
 Selection, 279–284
 Truss Members, 252
Beams, See Bending Members
Bearing Plates, 4, 51, 212–214, 396, 443–448
Bearing Wall, 11
Bending Members,
 Beams, 8, 164–214
 Composite see Composite Beams
 Double Angle, 202–205
 Flange Local Buckling, 188–191
 Girders, 164
 Lateral-Torsional Buckling, 176–188
 Leg Local Buckling, 206
 Open Web Steel Joists, 215–218
 Single Angle, 205–207
 Tee, 202–205
 Web Local Buckling, 191, 225–237
 Yielding, 165–169
Blast, 30–31, 348
Block Shear, 72, 93–102, 388–392, 399, 408–409, 423, 432–433, 456, 461
Bolts,
 A307, 67–68, 364, 368–369
 A325, 67–68, 365–366, 368–369
 A490, 67–68, 365–366, 368–369
 Bearing, 367–370, 377–378
 Combined Forces, 377–378
 Common, see ASTM, A307
 F1852, 67–68, 365–366
 F2280, 67–68, 365–366
Bolts (continued)
 Group A, 364–365, 368
 Group B, 365, 368
 High Strength, 364–366
 Holes, 366–367
 Limit States, 367–370
 Shear, 368–369
 Slip-Critical, 376–377
 Tension, 370
 Tear Out, 369–370
 Buckling-Restrained, 496–498
EBF, 490, 494–495
OCBF, 490, 494
SCBF, 490–493
Seismic, 490–498
Bracing,
 Beam, 181, 303–304
 Column, 118–120, 302–303
 Design, 302–306
 Frame, 259–262, 304
 Nodal, 302
 Relative, 302
 Stability, 3, 302–306, 490, 493
 Tension, 106
Bracing Member, 71–72, 75, 106–109
Buckling Load, 115–118
Building Codes, 5, 23, 27, 484–485
Built-up Girder, see Plate Girder
Burnham, Daniel, 48
C
 Calibration, 45–46
 Carnegie-Phipps Steel Company, 48
Chemical Components, 60–62
 Carbon, 61
 Chromium, 62
 Columbium, 61
 Copper, 62
 Manganese, 61
 Molybdenum, 62
 Nickel, 62
 Phosphorus, 61–62
 Silicon, 61
 Sulfur, 62
 Vanadium, 61
Children’s Hospital, 222
Collapse Load, 19
Collapse Mechanism, 19, 199–201
Column, 7–8, See also Compression Member
Column Stiffening, 474–482
 Doubler Plates, 475–480
 Flange Local Bending, 475
 Stiffeners, 477–478
 Web Compression Buckling, 476
 Web Crippling, 476
 Web Local Yielding, 475
 Web Panel Zone Shear, 477
Combined Force Member, 6–8, See also Beam-Columns
Comcast Center, 112
Compact Beams, 169–187
Composite Beams, 313–347
 Advantages, 315
 Design, 325
 Tables, 325–329
 Preliminary, 340–344
 Disadvantages, 315
 Effective Flange Width, 316
 Encased, 340
 Flexural Strength, 316–325
 Fully Composite, 318–322
 Lower Bound Moment of Inertia, 345–347
 Metal Deck, 332–340
 Negative Moment Strength, 330
 Partially Composite, 322–325
 Plastic Neutral Axis, 317
 Serviceability, 344–347
 Shored, 315–316
 Steel Stud Anchors, 330–335
 Unshored, 315–316
Composite Columns, 348–356
 Beam-Columns, 352–356
 Encased Shapes, 348–351
 Filled HSS, 351–352
Composite Construction, 312–314
Composite Systems, Seismic, 499
Compression Member, 7, 112–159
 Base Plate, 157–159
 Behavior, 114–120
 Boundary Conditions, 117–120
 Bracing, 118–120, 302–303
 Built-up, 156–157
 Design Tables, 145–150, 503–508
 Effective Length, 131–139
 End Conditions, 117–120
 Euler Column, 114–117
 Flexural-Torsional Buckling, 150–154
 Length Effects, 131–137
 Real Column, 121–124
Compression Member (continued)
 Shapes, 112–114
 Single Angle, 155–156
 Slender Elements, 139–144
 Strength, 114–131
 Torsional Buckling, 150–154
Concentrated Forces, 210–214, 242, 244–246, 474–476
Connecting Elements, 387–388
 Compression, 388
 Flexure, 388
 Shear, 388
 Tension, 387–388
Connections, 9–11, 359–482
 Beam-to-Column, 361–362
 Bolted Flange Plate, 453–454, 467–464
 Bolted Tee, 453
 Bracing, 396, 432–443
 Bracket, 360–361
 Clip Angle, 364
 Direct Welded Flange, 453–454, 456–461
 Double-Angle,
 Bolted-Bolted, 398–408
 Bolted-Welded, 412–414
 Welded-Bolted, 408–412
 Welded-Welded, 414
 Fixed, 361–363
 Fully Restrained, 362–363, 453
 Moment,
 Fully Restrained, 362–363, 453–482
 Limit States, 456
 Moment-Rotation Curves, 294–297, 454
 Seated, 427–432
 Seismic, 499
 Shear, 396–432
 Shear Tab, 422–427
 Simple, 361–364, 396–449
 Single-Angle, 414–422
 Single-Plate, 422–427
 Tension, 360–361
 Butt, 359–360
 Hanger, 360, 440–443
 Lap, 359–360
 Prying Action, 440–443
 Type 2 with Wind, 295–296
 Welded Flange Plate, 461–466, 453–454
 Whitmore Section, 433–437
Construction Types, 11–15
Continuous Beams, 197–202
Critical Buckling, 116
D
 Dallas Cowboys Stadium, 396
 Dead Load, 28, 31–32
 Deflection, 23, 208–210, 315–316, 344–347
 Direct Analysis Method, 276–279
 Drift, 23, 208–209
 Drift Amplification Factor, 484, 487, 490, 496
E
 Eads Bridge, 48–49
 Effective Length, 118–121, 131–139
 Elastic, 131–137
 Inelastic, 137–139
 Method, 138, 277
 Elastic Buckling, 114–120
 Encased Beam, 312–313, 340
 Euler Buckling, 114–120
 Euler Column, 114–117
F
 First-Order Effects, 253–255, 259–262, 266–269
 Flange Local Bending, 221, 244, 246–247, 275
 Flexural Moment Connections, 295, 363–364
 Flexural Buckling, 124–126
 Flexural-Torsional Buckling, 131, 150–154
 Framing Systems, 11
G
 Girders, 8, 11
 Girts, 6, 8
 Grades of Steel, See ASTM
 Gravity Columns, 285–295
 Ground Snow Load, 29, 34–35
H
 High-Rise Construction, 14–15
 Holes,
 Oversize, 82
 Patterns, 82–85
 Placement, 82
 Size, 79
 Slotted, 82
 Standard, 79–81
 Home Insurance Building, 48–49
I
 Impact, 30–31
 Inelastic Buckling, 125–126
Index

Inelastic Design, 17, 19–20
Influence Area, 32–34
Interaction Diagram, 256–258
Interaction Equation, 256–258
International Building Code (IBC), 23, 484–485

J
Jenney, William LeBaron, 48
John Hancock Center, 15–16
Joists, 6–8, 11, 215–218

K
K-factors, 132

L
L.A. Live, 484
Lateral Bracing, 176–178, 303–306
Lateral-Torsional Buckling, 176–188
Leaning Columns, 285–295
Limit States, 17–18, 22–23
Lintel, 8
Live Load, 27–29, 32–34
Arbitrary Point in Time, 27–28
Reduction, 32–33
Load and Resistance Factor Design (LRFD), 18–19
Load Combinations, 38–39
Load Effect, 7–9, 15–17, 20–22
Loads, 27–38
Local Buckling, 139–144, 188–192, 203–206, 224–227
Long- Span Construction, 13–14
Lower Bound Moment of Inertia, 345–347

M
Margin of Safety, 16, 18
Member Effects, 254, 268
Metal Deck, 313, 332–340
MidMichigan Medical Center, 359
Millennium Science Center, 164
Minor Axis Bending, 193–195
Modular Ratio, 345
Modulus of Elasticity, 54
Moment Frame, 132–133, 266–276
IMF, 486–487, 490
OMF, 486–487, 490
Seismic, 486–490
SMF, 486–490
Moment Gradient, 180–187
Moment Redistribution, 197–199
Moment-Rotation Curves, 294–295, 297, 362, 453

N
National Earthquake Hazard Reduction Program (NEHRP), 484
Nelson Stud Company, 313
NFPA Building Code, 23
Nodal Braces, 302–306
Nominal Strength, 15–19
Nomograph, see Alignment Chart
Noncompact Beams, 188–192
Notional Load, 276–277

O
One Bryant Park, 27
One World Trade Center, 1

P
Partially Restrained Frames, 294–302
Pentagon, 31
Perfect Column, 115–117
Plastic Analysis, 197, 199–202
Plastic Design, 199–202
Plastic Hinges, 199–202
Plastic Moment, 19, 166–169
Plastic Region, 54–55
Plastic Section Modulus, 167
Plate Girder, 60, 222–250
Bending Strength Reduction Factor, 229–231
Homogeneous, 222
Hybrid, 222
Noncompact Web, 224–228
Nontension Field Action, 237–239
Shear, 237–242
Slender Web, 228–231
Tension Field Action, 239–242
Transverse Stiffeners, 242–250
Probability, 20–22
Proportional Limit, 53–55
Protected Zones, 490, 493, 500
Prying Action, 433, 441–443
Pure Column, 115
Purlin, 6, 8
P-δ Effects, see Member Effect
P-Δ Effects, see Structure Effect

R
Rand-McNally Building, 48–49
Ratner Athletic Center, 71
Reduced Beam Section, 487–489
Relative Braces, 302–304
Required Strength, 15, 18–19
Residual Stresses, 121–125
Response Modification Factor, 484, 487, 490, 496
Root, John, 48

S
Safety, 5–6, 15–21
Sears Tower, see Willis Tower
Second-Order Effects, 15, 253–255, 268–276
Seismic Behavior, 484–486
Seismic Design, 484–500
 Capacity Design, 485–486
 Categories, 485
 Fuse Elements, 485–486
 Protected Zones, 490, 493, 500
Seismic Load, 27–28, 30, 37–39, 484–485
Semirigid Connections, 294
Serviceability, 17, 22–23
Shake Down, 296–297
Shapes,
 Bars, 59
 Built-up, 60
 C, 57
 HP, 56
 HSS, 58
 L, 57
 M, 57
 MC, 57
 MT, 58
 S, 56–57
 ST, 58
 W, 55–56
 WT, 57–58
 Pipe, 58
 Plates, 58–59
Shard-London Bridge Tower, 312
Shear,
 Beams, 195–196
 Plate Girders, 237–242
 Post Buckling Strength, 240–241
 Tension Field Action, 239–242
Shear Stud, 69, 313–314
Metal Deck, 332–335
Placement, 331–332
Strength, 330–332
Strength Adjustment Factors, 334
Shored Construction, 315–316
Sidesway,
 Inhibited Frame, 133–137
 Permitted Frame, 133–137
 Prevented Frame, 133–137
 Uninhibited Frame, 133–137
 Web Buckling, 211, 244, 246
Single Angle Compression Member, 150, 155–156
Single-Story Frame, 15
Slender Elements, 131, 139–144, 191, see also Plate Girders
 Slenderness Parameter, 126
Snow Load, 28–29, 34–35
Spandrel, 8–9, 33
Special Plate Shear Walls, 496, 498–499
Special Truss Moment Frame, 487, 496–497
St. Louis Gateway Arch, 48
Stability Analysis, 276–279
Stem Local Buckling, 203
Stiffeners, 242–250
 Bearing, 211, 244–250
 Design, 247–250
 Intermediate, 242–244
Stochastic Analysis, 27, 46
Strain Hardening, 53–54
Structural Stability Research Council (SSRC), 124
Structural Steel,
 Definitions of, 6–15
 Design, 1–6
 Structure Effect, 255, 268–269
 System Overstrength Factor, 484
T
 Tangent Modulus of Elasticity, 138
Tensile Strength, 53–54
Tension Field Action, 239–242
 Limitations, 240–241
Tension Member, 6–7, 71–109
 Behavior, 75–77
 Bracing, 106–109
 Built-up, 106
 Eye Bar, 105
 Fracture, See Tension Member, Rupture
 Hanger, 6–7, 71–73
 Pin-connected, 102–105
 Rod, 105
 Rupture, 76–77
 Sag Rod, 6, 71–73
 Shapes, 73–75
 Slenderness, 90
 Truss, 106
 Yielding, 76
Terrorism, 31
Thermal Loads, 30–31
Three Hundred East Randolph, 252
Torsional Buckling, 131, 150–154
Transient Live Load, 29
Tributary Area, 32–33

U
Unbraced Frame, 132–133, 266–276
Unshored Construction, 315–316

V
Vibration, 208–209, 344–345

W
Weak Axis Bending, 193–195
Web,
 Crippling, 211–216, 244–246
 Local Buckling, 191–192,
 224–225
 Local Yielding, 211–212, 244–245
 Plastification Factor, 226–227
 Sidesway Buckling, 211, 244–246
Welds,
 Fillet Weld, Strength, 381–383
 Groove Weld, Strength, 387
 Limit States, 381–383
 Positions, 380
 Sizes, 380–381
 Types, 379–380
 Welding Process, 378–379
 FCAW, 379
 SAW, 379
 GMAW, 379
 SMAW, 378–379
Whitmore Section, 433–437
Willis Tower, 15–16
Wind Load, 29–30, 34–37
World Trade Center, 1, 15–16

Y
Yankee Stadium, 453
Yield,
 Moment, 166
 Point, 53–55
 Stress, 53–55