Brief Contents

1. **Introduction**
 1
2. **Loads, Load Factors, and Load Combinations**
 27
3. **Steel Building Materials**
 48
4. **Tension Members**
 71
5. **Compression Members**
 112
6. **Bending Members**
 164
7. **Plate Girders**
 222
8. **Beam-Columns and Frame Behavior**
 252
9. **Composite Construction**
 312
10. **Connection Elements**
 359
11. **Simple Connections**
 396
12. **Moment Connections**
 453
13. **Steel Systems for Seismic Resistance**
 484

Appendix
503

Index
509
Contents

1. Introduction
- **1.1 Scope** 1
- **1.2 The Specification** 1
- **1.3 The Manual** 3
- **1.4 AISC Website Resources** 4
- **1.5 Principles of Structural Design** 5
- **1.6 Parts of the Steel Structure** 6
- **1.7 Types of Steel Structures** 11
 - **1.7.1 Bearing Wall Construction** 11
 - **1.7.2 Beam-and-Column Construction** 11
 - **1.7.3 Long-Span Construction** 13
 - **1.7.4 High-Rise Construction** 14
 - **1.7.5 Single-Story Construction** 15
- **1.8 Design Philosophies** 15
- **1.9 Fundamentals of Allowable Strength Design (ASD)** 18
- **1.10 Fundamentals of Load and Resistance Factor Design (LRFD)** 18
- **1.11 Inelastic Design** 19
- **1.12 Structural Safety** 20
- **1.13 Limit States** 22
- **1.14 Building Codes and Design Specifications** 23
- **1.15 Integrated Design Project** 23
- **1.16 Problems** 26

2. Loads, Load Factors, and Load Combinations
- **2.1 Introduction** 27
- **2.2 Building Load Sources** 28
 - **2.2.1 Dead Load** 28
 - **2.2.2 Live Load** 28
 - **2.2.3 Snow Load** 29
 - **2.2.4 Wind Load** 29
 - **2.2.5 Seismic Load** 30
 - **2.2.6 Special Loads** 30
- **2.3 Building Load Determination** 31
 - **2.3.1 Dead Load** 31
 - **2.3.2 Live Load** 32
 - **2.3.3 Snow Load** 34
 - **2.3.4 Wind Load** 34
 - **2.3.5 Seismic Load** 37
- **2.4 Load Combinations for ASD and LRFD** 38
- **2.5 Load Calculations** 39
- **2.6 Calibration** 45
- **2.7 Problems** 46

3. Steel Building Materials
- **3.1 Introduction** 48
- **3.2 Applicability of the AISC Specification** 50
- **3.3 Steel for Construction** 53
- **3.4 Structural Steel Shapes** 55
 - **3.4.1 ASTM A6 Standard Shapes** 55
 - **3.4.2 Hollow Shapes** 58
 - **3.4.3 Plates and Bars** 58
 - **3.4.4 Built-up Shapes** 60
- **3.5 Chemical Components of Structural Steel** 60
- **3.6 Grades of Structural Steel** 62
 - **3.6.1 Steel for Shapes** 62
 - **3.6.2 Steel for Plates and Bars** 65
 - **3.6.3 Steel for Fasteners** 67
 - **3.6.4 Steel for Welding** 69
 - **3.6.5 Steel for Shear Studs** 69
- **3.7 Availability of Structural Steel** 69
- **3.8 Problems** 69

4. Tension Members
- **4.1 Introduction** 71
- **4.2 Tension Members in Structures** 71
- **4.3 Cross-Sectional Shapes for Tension Members** 73
- **4.4 Behavior and Strength of Tension Members** 75
 - **4.4.1 Yielding** 76
 - **4.4.2 Rupture** 76
- **4.5 Computation of Areas** 77
 - **4.5.1 Gross Area** 78
 - **4.5.2 Net Area** 78
 - **4.5.3 Influence of Hole Placement** 82
 - **4.5.4 Effective Net Area** 85
- **4.6 Design of Tension Members** 90
- **4.7 Block Shear** 93
- **4.8 Pin-Connected Members** 102
- **4.9 Eyebars and Rods** 105
- **4.10 Built-Up Tension Members** 106
- **4.11 Truss Members** 106
- **4.12 Bracing Members** 106
4.13 Problems 109

Multi-Chapter Problem 111

Integrated Design Project 111

5. Compression Members 112

5.1 Compression Members in Structures 112
5.2 Cross-Sectional Shapes for Compression Members 112
5.3 Compression Member Strength 114
5.3.1 Euler Column 114
5.3.2 Other Boundary Conditions 117
5.3.3 Combination of Bracing and End Conditions 118
5.3.4 Real Column 121
5.3.5 AISC Provisions 124
5.4 Additional Limit States for Compression 131
5.5 Length Effects 131
5.5.1 Effective Length for Inelastic Columns 137
5.6 Slender Elements in Compression 139
5.7 Column Design Tables 145
5.8 Torsional Buckling and Flexural-Torsional Buckling 150
5.9 Single-Angle Compression Members 155
5.10 Built-Up Members 156
5.11 Column Base Plates 157
5.12 Problems 159

Multi-Chapter Problems 162

Integrated Design Project 163

6. Bending Members 164

6.1 Bending Members in Structures 164
6.2 Strength of Beams 165
6.3 Design of Compact Laterally Supported Wide-Flange Beams 169
6.4 Design of Compact Laterally Unsupported Wide-Flange Beams 176
6.4.1 Lateral Torsional Buckling 176
6.4.2 Moment Gradient 180
6.5 Design of Noncompact Beams 188
6.5.1 Local Buckling 188
6.5.2 Flange Local Buckling 189
6.5.3 Web Local Buckling 191
6.6 Design of Beams for Weak Axis Bending 193
6.7 Design of Beams for Shear 195
6.8 Continuous Beams 197
6.9 Plastic Analysis and Design of Continuous Beams 199
6.10 Provisions for Double-Angle and Tee Members 202
6.10.1 Yielding 202
6.10.2 Lateral-Torsional Buckling 202
6.10.3 Flange Local Buckling 203
6.10.4 Stem Local Buckling 203
6.11 Single-Angle Bending Members 205
6.11.1 Yielding 206
6.11.2 Leg Local Buckling 206
6.11.3 Lateral-Torsional Buckling 206
6.12 Members in Biaxial Bending 207
6.13 Serviceability Criteria for Beams 208
6.13.1 Deflection 208
6.13.2 Vibration 208
6.13.3 Drift 209
6.14 Concentrated Forces on Beams 210
6.14.1 Web Local Yielding 211
6.14.2 Web Crippling 212
6.15 Open Web Steel Joists and Joist Girders 215
6.16 Problems 218

Multi-Chapter Problems 221

Integrated Design Project 221

7. Plate Girders 222

7.1 Background 222
7.2 Homogeneous Plate Girders in Bending 224
7.2.1 Noncompact Web Plate Girders 225
7.2.2 Slender Web Plate Girders 229
7.3 Homogeneous Plate Girders in Shear 237
7.3.1 Nontension Field Action 237
7.3.2 Tension Field Action 239
7.4 Stiffeners for Plate Girders 242
7.4.1 Intermediate Stiffeners 242
7.4.2 Bearing Stiffeners 244
7.4.3 Bearing Stiffener Design 247
7.5 Problems 250

8. Beam-Columns and Frame Behavior 252

8.1 Introduction 252
8.2 Second-Order Effects 253
8.3 Interaction Principles 255
8.4 Interaction Equations 256
8.5 Braced Frames 259
8.6 Moment Frames 266
8.7 Specification Provisions for Stability Analysis and Design 276
8.7.1 Direct Analysis Method 276
8.7.2 Effective Length Method 277
8.7.3 First-Order Analysis Method 277
8.7.4 Notional Loads 277
8.8 Initial Beam-Column Selection 279
8.9 Beam-Column Design Using Manual Part 6 282
8.10 Combined Simple and Moment Frames 285
8.11 Partially Restrained Frames 294
8.12 Bracing Design 302
8.12.1 Column Bracing 303
8.12.2 Beam Bracing 303
8.12.3 Frame Bracing 304
8.13 Tension Plus Bending 306
8.14 Problems 306
Multi-Chapter Problem 311
Integrated Design Project 311

9. Composite Construction 312
9.1 Introduction 312
9.2 Advantages and Disadvantages of Composite Beam Construction 315
9.3 Shored versus Unshored Construction 315
9.4 Effective Flange 316
9.5 Strength of Composite Beams and Slab 316
9.5.1 Fully Composite Beams 318
9.5.2 Partially Composite Beams 322
9.5.3 Composite Beam Design Tables 325
9.5.4 Negative Moment Strength 330
9.6 Shear Stud Strength 330
9.6.1 Number and Placement of Shear Studs 331
9.7 Composite Beams with Formed Metal Deck 332
9.7.1 Deck Ribs Perpendicular to Steel Beam 333
9.7.2 Deck Ribs Parallel to Steel Beam 335
9.8 Fully Encased Steel Beams 340
9.9 Selecting a Section 340
9.10 Serviceability Considerations 344
9.10.1 Deflection During Construction 344
9.10.2 Vibration Under Service Loads 345
9.10.3 Live Load Deflections 345
9.11 Composite Columns 348
9.12 Composite Beam-Columns 352
9.13 Problems 356
Multi-Chapter Problem 358
Integrated Design Project 358

10. Connection Elements 359
10.1 Introduction 359
10.2 Basic Connections 359
10.3 Beam-to-Column Connections 361
10.4 Fully Restrained Connections 362
10.5 Simple and Partially Restrained Connections 363
10.6 Mechanical Fasteners 364
10.6.1 Common Bolts 364
10.6.2 High-Strength Bolts 364
10.6.3 Bolt Holes 366
10.7 Bolt Limit States 367
10.7.1 Bolt Shear 368
10.7.2 Bolt Bearing 369
10.7.3 Bolt Tension 370
10.7.4 Slip 376
10.7.5 Combined Tension and Shear in Bearing-Type Connections 377
10.8 Welds 378
10.8.1 Welding Processes 378
10.8.2 Types of Welds 379
10.8.3 Weld Sizes 380
10.9 Weld Limit States 381
10.9.1 Fillet Weld Strength 381
10.9.2 Groove Weld Strength 387
10.10 Connecting Elements 387
10.10.1 Connecting Elements in Tension 387
10.10.2 Connecting Elements in Compression 388
10.10.3 Connecting Elements in Flexure 388
10.10.4 Connecting Elements in Shear 388
10.10.5 Block Shear Strength 388
10.11 Problems 392

11. Simple Connections 396
11.1 Types of Simple Connections 396
11.2 Simple Shear Connections 397
11.3 Double-Angle Connections: Bolted-Bolted 398
11.4 Double-Angle Connections: Welded-Bolted 408
11.5 Double-Angle Connections: Bolted-Welded 412
11.6 Double Angle Connections: Welded-Welded 414
11.7 Single-Angle Connections 414
11.8 Single-Plate Shear Connections 422
11.9 Seated Connections 427
11.10 Light Bracing Connections 432
11.11 Beam Bearing Plates and Column Base Plates 443
11.12 Problems 449
Multi-Chapter Problem 452
Integrated Design Project 452

12. Moment Connections 453
12.1 Types of Moment Connections 453
12.2 Limit States 456
12.3 Moment Connection Design 456
12.3.1 Direct-Welded Flange Connection 456
12.3.2 Welded Flange Plate Connection 461
12.3.3 Bolted Flange Plate Connection 467
12.4 Column Stiffening 474
12.4.1 Flange Local Bending 475
12.4.2 Web Local Yielding 475
12.4.3 Web Crippling 476
12.4.4 Web Compression Buckling 476
12.4.5 Web Panel Zone Shear 477
12.5 Problems 482
Multi-Chapter Problem 483
Integrated Design Project 483

13. Steel Systems for Seismic Resistance 484
13.1 Introduction 484
13.2 Expected Behavior 485
xx Contents

13.3 Moment-Frame Systems 486
 13.3.1 Special Moment Frames (SMF) 487
 13.3.2 Intermediate Moment Frames (IMF) and
 Ordinary Moment Frames (OMF) 490

13.4 Braced-Frame Systems 490
 13.4.1 Special Concentrically Braced Frames
 (SCBF) 491
 13.4.2 Ordinary Concentrically Braced Frames
 (OCBF) 494
 13.4.3 Eccentrically Braced Frames
 (EBF) 494

13.5 Other Framing Systems 496
 13.5.1 Special Truss Moment Frames
 (STMF) 496
 13.5.2 Buckling-Restrained Braced Frames
 (BRBF) 497

13.5.3 Special Plate Shear Walls (SPSW) 498
13.5.4 Composite Systems 499

13.6 Other General Requirements 499
 13.6.1 Bolted and Welded Connections 499
 13.6.2 Protected Zones 500
 13.6.3 Local Buckling 500
 13.6.4 Column Requirements 500
 13.6.5 Column Bases 500

13.7 Conclusions 500

13.8 Problems 500

Multi-Chapter Problem 501
Integrated Design Project 501

Appendix 503
Index 509