INDEX

A
ABC, 273–274. See also Assumption based coordinates
AC, 216. See also Address-centric routing
Access control list, 408, 418
ACE, 201–203. See also Algorithm for cluster establishment
ACL, 408, 418. See also Access control list
ACQP, 226–227. See also Acquisitional query processing
ACQUIRE, 100–101, 137. See also Algorithm for
Active query forwarding
Acquisitional query processing, 226–227
Active query forwarding, 100
Adaptability, 7
Adaptive election algorithm, 54
Adaptive mobility-aware MAC protocol, 46–47
Adaptive periodic TEEN, 92
Adaptive rate control, 359
ADCs, 20. See also Analog-to-digital converters
Additive increase multiplicative decrease, 353
Ad-hoc on-demand distance vector, 312
AEA, 54. See also Adaptive election algorithm
AES, 372
Agent
home, 108–109, 137
immediate, 117
mobile transport, 114
primary, 117
AHBP, 152. See also Ad hoc broadcast protocol
AIMD, 353, 357–358, 360, 364. See also Additive increase
multiplicative decrease
Algorithm(s)
asymmetric key, 372–373, 378–379, 398
elliptic curve digital signature, 379
emergent, 201–202
heuristic-based, 122
location-guided tree constructing, 161
neural-network-based, 232
off-line, 122
on-line, 122
reachback firefly, 303
shortest-path-based, 122–123
spanning-range-based, 122–123
symmetric key, 372–373
Algorithm for cluster establishment, 201

Copyright © 2009 Institute of Electrical and Electronics Engineers
ALOHA, 36–37
 pure, 36–37
 slotted, 36–37
Analog-to-digital converters, 20
AOA, 245, 248–249. See also Angle of arrival
AODV, 312. See also Ad-hoc on-demand distance vector
APIs, 11. See also Application programming interfaces
APOS, 418–419, 427–429. See also Application objects
Application(s)
 framework, 418, 426
 health care, 4
 objects, 418
 programming interfaces, 11
 security, 5
 support sublayer, 418, 428
 surveillance, 5
APS, 418, 426–429. See also Application support sublayer
APTEEN, 92, 137. See also Adaptive periodic TEEN
ARC, 357, 359–360. See also Adaptive rate control
ARQ, 30, 375. See also Automatic repeat request
Arrival
 angle of, 245
 phase of, 248
 time of, 245
ARSP, 303. See also Adaptive-rate synchronization protocol
Assumption based coordinates, 273
Attack
 MiM, 378, 380, 399
 Sybil, 376–377, 389
 wormhole, 385–386
 batch-based broadcast, 381
 broadcast/multicast, 370, 380–382
 public key, 378–379
 unicast, 380, 382
Availability, 370, 386
Awake-sleep scheduling algorithm, 83, 138
B
BABRA, 381. See also Batch-based broadcast authentication
Balanced incomplete block design, 394
Bandwidth
 allocation, 345, 351
 resources, 7, 35–36
Belief state, 132–134
Bellman-Ford shortest path algorithm, 85
BER, 30, 318. See also Bit error rate
BFS, 196–197. See also Breadth-first search
BIBD, 394, 397. See also Balanced incomplete block design
BIP, 156–158. See also Broadcast incremental power
 minimal spanning tree based, 156–157
 min-power-path-based, 156–157
 MST-based, 156–157
 Bit error rate, 30, 318
Bluetooth, 11, 13–14, 39, 408. See also IEEE 802.15.1
B-MAC, 60–61
Breadth-first search, 196
Broadcast
 area-based, 150
 authenticated, 204, 208
 blind, 149, 166
 counter-based, 150
 distance-based, 150
 integrated distance and angle based, 153
 localized power-efficient, 158
 min-hop maximum residual energy, 157
 near-maximum lifetime, 157
 power-aware, 147
 probability-based, 149
 TDMA based, 160
Broadcasting, 16, 145–168
 energy-efficient, 156, 158
Broadcasting mechanisms
 energy-efficient, 156
 location-aided, 153
 neighborhood-aware, 150–151, 155
 reliable, 158–159
Broadcasting strategy
 cluster-based, 152
 connected-dominating-set-based, 151
BVGF, 83, 137. See also Bounded Voronoi greedy forwarding

C
CA, 378–379. See also Certificate authority
CADR, 132–133, 137. See also Constrained anisotropic diffusion routing
CAMP, 161. See also Core assisted mesh protocol
CAP, 408, 410–412, 415, 423. See also Contention access period
Carrier frequency generation, 30
Carrier sense multiple access, 35–38, 351 non-persistent, 37, 51
n-persistent, 37
1-persistent, 37
Carrier sense multiple access with collision avoidance, 441
Carrier sensing, 44
physical, 44
virtual, 44
CCF, 357–360. See also Congestion control and fairness
CDMA, 10, 38. See also Code division multiple access
CDMA sensor MAC, 57
CDS, 151–152, 156. See also Connected dominating set
CFP, 408, 410–411. See also Contention free period
Cellular system(s), 1–2, 10, 19, 30
Certificate authority, 378
Challenge response, 377, 393
Channel
access, 12, 410
assignment phase, 55
fading, 2, 8
utilization, 7
CHR, 134–135, 137. See also Cluster-head relay protocol
Clear-to-send, 37
Clock drift(s), 44, 53, 286, 297–301
rates, 44
CLOQ, 275–279. See also Cooperative localization with quality of estimate
Cluster formation, 196–197, 201–202
Cluster-head election algorithms, 181
Cluster-head failure, 179
Clustering, 22–24
adaptive, 193
architecture, 23
distributed, 195, 201
energy-efficient hierarchical, 197
hierarchical, 91–92, 187, 197–199
hierarchy, 23
maintenance, 180, 193
mechanisms, 178, 183, 191
mobility-based, 187
multilevel, 197–198
multitier hierarchical, 196
node, 173–195
passive, 189, 191
passive node, 191
process, 195, 208
secure, 203
single-level, 197
strategies, 23
structure(s), 174, 178, 190, 208
techniques, 174, 192, 208
2-hop, 181, 190
Clustering algorithm(s), 23–24, 173–208
highest connectivity, 182
lowest ID, 181
mobility-based, 187
weighted, 183
CODA, 356–360. See also Congestion detection and avoidance
Codebook value, 95
Code division multiple access, 10, 38
Coding
distributed source, 437
dynamic channel, 443
erasure, 382
gain, 30
multimedia source, 437
Collision, 35
avoidance, 36–37, 41–44, 50
data, 35
probability, 55
time, 55
Communication(s)
acoustic, 449–451, 453
acoustic wireless, 449
graph, 69
many-to-one, 344
one-to-all, 145
one-to-many, 145
peer-to-peer, 344
Compression
 inter-frame, 437
 intra-frame, 437
Confidentiality, 370–372, 388
Congestion
 control, 343–366
 control and fairness, 358
 detection, 351, 356–360
 detection and avoidance, 356, 358
 mitigation and avoidance, 351–352
 notification, 351–352, 356–360, 364
Congestion notification
 explicit, 352, 359–360, 364
 implicit, 352, 358–360
Contention, 45, 49
 correlated, 49
 resolution, 59
 slot, 49–50
 window, 43, 49–50
Control
 access, 417–418
 congestion, 457, 459–460, 464
 flow, 347–348
 power, 435, 443, 457–461
 traffic, 352
Cooperative localization with quality of estimate, 275
Coordination
 actor-actor, 444–445, 447
 sensor-actor, 444–447
Coordination of power saving with routing, 81
Correlation
 spatial, 216, 227, 229, 450, 460–461
 spatio-temporal, 216, 224
 temporal, 216, 224, 460
Cost distribution, 84–85
Cougar, 98–99, 137
 approach, 98–99
Coverage, 68, 71, 82–83, 139
 full, 71
 partial, 71
 path, 106
 redundant, 71–72
Cramer-Rao lower bound, 252
CRLB, 252, 257, 261, 264–267. See also Cramer-Rao lower bound
Crossbow, 437, 441, 454–455
CrossBow Mica, 129
Cross-layer
 control unit, 441–442
 design, 168, 434, 441, 456–457, 459–460, 463–466
 interaction, 435, 441, 457, 460, 462–463
 module, 463
 optimization, 435, 461
 pairwise, 458, 460, 463
 resource allocation, 457–458
Cryptography
 elliptic curve, 379, 399
 identity-based, 379–380, 399
CSMA 35–38, 42, 49–52, 59–61, 351.
 See also CSMA based MAC protocol, 49, 52
CS-MAC, 57–58. See also CDMA sensor MAC
CSMA/CA, 12, 37–38, 58, 441, 446.
 See also Carrier sense multiple access with collision avoidance
CTS, 37, 43–45, 50. See also Clear-to-send

D
DAA, 237–239. See also Data-aware anycast
DAT, 233–234. See also Data aggregation tree
Data
 aggregation, 16, 19, 23, 26, 96, 136, 174, 176, 204, 208, 215–217, 229–239
 cache, 96–97
 centricity, 67, 73, 75, 137–138
 collection, 7
 delivery, 7, 26, 28, 47
 dissemination, 15–16, 67–139
 encryption, 27, 30, 417–418
 fusion, 75, 89–90, 124–125, 129, 135
 gathering tree, 47–48
 named, 75, 95, 100
 naming, 94, 96
 prediction, 48
 redundancy, 3, 25
 warehouse, 114
Data aggregation, 16, 19, 23, 26, 96, 136, 174, 176, 204, 208, 215–217, 229–239
delay-constrained, 233
neural-network-based, 232
QoS constrained, 235
structure-free, 237
Data-aware anycast, 237
Data dissemination
 proxy tree-based, 121
 two-tier, 115, 163
Data forwarding
 interruption, 47
 process, 47
Data stream multiplexing, 27, 29
DBTMA, 329. See also Dual busy tone multiple access
DC, 216. See also Data-centric routing
DCDD, 336. See also Diversity coded directed diffusion
DCF, 38, 44. See also Distributed coordination function
DDM, 161. See also Differential destination multicast
DDP, 276. See also Detected direct path
Delivery
 continuous, 344
 event-driven, 344
 hybrid, 344
 latency, 7
 packet, 345, 349–350, 358
 query-driven, 344
DE-MAC, 55–56. See also Distributed energy-aware MAC
Denial of service, 375
DES, 372
DESYNC, 303
DICAS, 390
Dijkstra's algorithm, 106, 156, 162
Directed diffusion, 95–97, 109, 115, 121,
 137, 223–224
 diversity coded, 336
Directed path, 249
 detected, 276
 undetected, 250
Direct sequence, 254
Direct spread spectrum, 253
Discovery
 device, 416, 427, 429
 route, 419, 424–426
 service, 427, 429
Distance measurement error, 277
Distributions
 center-based key, 203
 pairwise keying, 203
 public key based, 203
Distributed coordination function, 38
Distributed energy-aware MAC, 55
Distributed TCP cache, 355
Distributed weight-based energy-efficient hierarchical clustering, 199
DLP, 398. See also Discrete logarithm problem
D-MAC, 47–48
DME, 277. See also Distance measurement error
Dominating set, 147, 150–151, 155
 connected, 147, 150–151, 155
Doppler frequency spread, 451
DoS, 375, 386. See also Denial of service
DP, 249–252, 254, 257, 264, 276, 279.
 See also Directed path
DPM, 10, 315–316. See also Dynamic power management
DR, 269. See also Direct ranging
DRAND, 59
DS, 254. See also Direct sequence
DS-MAC, 46. See also Sensor MAC protocol with a dynamic duty cycle
DSR, 82. See also Dynamic source routing
DSS, 253. See also Direct spread spectrum
DTC, 355. See also Distributed TCP cache
Dual decomposition, 459
Duty cycle, 43, 46, 47–50, 52–53
 adjusting messages, 47
DVS, 10. See also Dynamic voltage scaling
DVS, 309, 375. See also Dynamic voltage scheduling
DWEHC, 199–201. See also Distributed weight-based energy-efficient hierarchical clustering
Dynamic power management, 10, 315
Dynamic voltage scaling, 10
 scheduling, 309, 375

E
EAD, 101–103, 137. See also Energy-aware data-centric routing
EAR, 332. See also Energy aware routing
Earliest deadline first, 56
Eavesdropping, 371–373
ECC, 379. See also Elliptic curve cryptography
ECC based Diffie-Hellman algorithm, 379, 399
ECDLP, 379. See also Elliptic curve
discrete logarithm problem
ECDSA, 379. See also Elliptic curve
digital signature algorithm
ECN, 364. See also Explicit congestion
notification
EDF, 56. See also Earliest deadline first
EEHC, 197–199. See also Energy-efficient
hierarchical clustering
Ekahau, 249
Elliptic curve
cryptography, 379
digital signature algorithm, 379
discrete logarithm problem, 379
Embedded microprocessors, 2
Enclosure
graph, 85–87
graph construction, 84–85
region, 85–86
Encryption, 370, 372–373, 385, 398
Energy
conservation, 30
consumption, 19, 22, 25, 29–31
depletion, 2, 8
leakage, 216
model, 68, 70, 78
optimization, 10
residual, 27
switching, 216
E-OMNST, 122. See also enhanced
OMNST
EPS, 358. See also Epoch-based
proportional selection
ER, 269. See also Extended ranging
Error(s)
control, 27–30, 375
code(s), 30
processing, 375
transmission, 374–375
ESRT, 355, 360–361, 363, 364–365. See also
Event-to-sink reliable transport
Estimation(s)
convex position, 267–268
population, 230–231
range, 243
recursive position, 269
statistical, 389
Euclidean
distance, 68, 83, 106–108
space, 269
Event descriptions, 95
Event-to-sink reliable transport, 353, 360,
364
Explicit congestion notification, 364
Explicit duty-cycle adjusting mechanism, 47
FAMA, 328–329. See also Floor
acquisition multiple access
Family
Medusa, 11
Moté, 11
Fault tolerance, 4, 7
FCC, 244, 254. See also Federal
communications commission
FDM, 56. See also Frequency division
multiplexing
FDMA, 10, 38. See also Frequency
division multiple access
FEC, 336. See also Forward erasure codes
FEC, 30, 318, 375–376. See also Forward
error correction
Federal communications commission,
244
FFDs, 409–410, 418, 420, 429. See also Full
function devices
Finite state machine, 233
Flat
architecture, 22
network, 22
F-LEACH, 204–205, 208
Flooding, 22, 162–167
branch aware, 110
event, 98
multipath extension of, 110–111
query, 98
Forward erasure codes, 336
Forward error correction, 30, 375
Forwarding
best-effort, 83
bounded Voronoi greedy forwarding, 83
geographic random, 83
geographical, 118
greedy geographical, 107, 116
minimum cost, 332
selective, 387
trajectory, 117
Forwarding discipline
geographical, 163
greedy geographical, 163
Frame sharing, 56
Frequency division
division multiplexing, 56
multiple access, 10, 38
Frequency
hopping pattern, 39
selection, 30–31
Freshness, 370, 385–386
sequential, 417–418
FSM, 233–234. See also Finite state machine
FST, 123. See also Full Steiner tree
FTSP, 298–299, 304. See also Flooding time synchronization protocol
FTP, 347. See also File transfer protocol
FullFlood, 222–223
Function devices
full, 409
reduced, 409
Funneling
effect, 60–61
region, 60–61
Funneling-MAC, 60
Fusion, 357–358, 360

G
GAF, 78–79, 137, 153–154. See also Geographical adaptive fidelity
GARUDA, 361–363
GBR, 154–155. See also Grid-based routing structure
GDOP, 258, 261. See also Geometric dilution of precision
GEAR, 80–81, 137. See also Geographic and energy-aware routing
GEDIR, 78. See also Geographic distance routing
Geocast
area, 164–166
data, 164
packet(s), 164–166
region, 165–166
zone, 165
Geocasting, 16, 145–149, 164–168
directed flooding-based, 165
Geocasting mechanisms
guaranteed, 166
non-guaranteed, 164
Geographic forwarding, 81
algorithm, 80–81
protocol, 81
Geographical adaptive fidelity, 78, 153
Geometric dilution of precision, 258
Geometrical triangulation, 257–258
GeRaF, 83–84, 137. See also Geographic random forwarding
Global identification, 2
Global positioning system, 20, 53, 244, 288
GMR, 163. See also Geographic multicast routing
GOAFR, 78. See also Greedy other adaptive face routing
Gossiping, 78
GPS, 20, 53, 57, 150, 153, 244–249, 253, 258, 263, 279, 288–290, 296. See also Global positioning system
GPSR, 78, 104, 109. See also Greedy perimeter stateless routing
GreedySplit algorithm, 227
Grid
construction, 115
maintenance, 115
Ground target detection, 3
Group key distribution, 399

H
Hardware resources, 8
HCN, 182–183, 188. See also Highest connectivity
HEED, 195–196, 201. See also Hybrid, energy-efficient, and distributed clustering approach for ad-hoc sensor networks
Heterogeneity
energy, 129–131
link, 129–131
Hierarchical
architecture, 22
network, 22, 31
Highest connectivity, 182
Hole(s), 81
area, 104
connectivity, 71, 76
coverage, 71, 76
Hole problem
sensor, 104–105
sink, 109, 113
Home
intelligence, 5
network, 5
smart, 5
Hop-TERRAIN, 272–275
Hotspot effect, 25
H-trees, 82
Hybrid clustering-based routing protocol, 92
Hybrid, energy-efficient, and distributed clustering approach, 195

I
IBC, 380. See also Identity-based cryptography
Idle listening, 42, 50–51, 55, 59
IDSQ, 131–132, 137. See also Information-driven sensor query
IEEE
1451, 13–14
1451.1, 14
1451.2, 14
1451.3, 14
1451.4, 14
802.11, 11, 13–14, 408
802.11 DCF, 44
802.15.1, 13–14, 408
802.15.3, 249
802.15.4, 12–14, 249, 407–410, 413–414, 417–419, 425
P1451.0, 14
P1451.5, 14
P1451.6, 14
ILP, 446. See also Integer linear program
Implicit contention, 56
Implicit prioritized MAC, 56
Industry process control, 1
Industrial scientific and medical bands, 31
Information dissemination
home agent based, 108, 137
quorum based, 107
In-network
aggregator, 100
processing, 67, 73–75, 87, 99, 129, 435, 438
Integer linear program, 446
Integrity, 370, 374, 376
frame, 417–418
Intelligent medium access with busy tone and power control 328
Interest
cache, 96–97
transmission, 96
Intra-cell
communication, 56
messages, 56
Intelligent guiding, 4
Internet, 1, 21
Intrusion detection, 370, 376, 390
Inventory control, 28
IPSec, 398
ISM, 31. See also Industrial scientific and medical bands

K
KDC, 391–392
Key cryptography
asymmetric, 372
public, 370
symmetric, 370, 372
Key distribution center, 391
Key management, 370, 391, 398–399
asymmetric, 398
group, 399
symmetric, 391
Key material distribution
deterministic, 394–395
location-based, 395
random, 393
Kullback-Leibler divergence, 105

L
LAR, 74. See also Location-aided routing
Layer
application, 13, 26–28
link, 26, 29
MAC, 12–13
network, 13, 26–27, 29
physical, 9, 13, 26, 30
LCA, 184–187, 199, 203. See also Linked cluster algorithm
LCC, 182–183. See also Least cluster change
LEACH, 88–92, 137. See also Low-energy adaptive clustering hierarchy
Leader-election, 56
algorithm, 100
LEAP, 399
Least cluster change, 182
Least-squares, 258
weighted, 258
LID, 181–183, 185, 188. See also Lowest ID
Lifetime
network, 21, 27
operational, 8, 19, 29, 31
Line of sight, 9–10, 249
Link(s)
assignment, 55
backhaul, 130–131
point-to-point, 156
reliability, 30
Linked cluster algorithm, 184
LMST, 158, 162. See also Localized minimal spanning tree
Local election process, 55–56
Localization
centralized, 264, 267
cooperative, 243–244, 247–248, 263–265, 275, 279
distributed, 269, 271
multihop network, 269
node, 243–244, 247, 262
Long-distance transmission, 21
LOS, 249, 251, 264, 279. See also Line of sight
Loss
detection, 353–354, 361–363
notification, 353–354
transmission, 450
Low-energy adaptive clustering hierarchy, 88
Lowest ID, 181
LS, 258–261, 269, 272, 279. See also Least-squares algorithm, 258, 261
LTS, 297–298, 304. See also Lightweight tree-based synchronization
M
MABS, 283. See also Broadcast/multicast authentication protocol
MAC, 376–377, 380–381. See also Message authentication code
MAC, 12–13, 15, 29–30, 35–61. See also Medium access control
self-stabilizing, 323
MAC protocols
ccontention-based, 35–36, 42–43, 55, 58
ccontention-free, 35–38, 42, 53, 57–58
MACA, 37–38, 319, 327–329. See also Multiple access with collision avoidance
MACAW, 38, 319, 328–329. See also Multiple access with collision avoidance wireless
Mahalanobis distance, 132–133
Management
binding, 429
network, 429
node, 429
security, 429
service(s), 408, 414–416, 418
Management plane(s), 27
connection, 27
power, 27
task, 27
Man-in-the-middle, 378
Malicious attacks, 7
MANETs, 1–2, 10, 19, 30. See also Mobile ad hoc networks
Many-to-one traffic pattern, 3, 29, 31, 60
MAODV, 161. See also Multicast-enabled ad-hoc on-demand vector routing
MASK, 374
Max-min D-clustering, 185
Max-min D-clustering algorithm, 185
MBC, 187–188. See also Mobility-based clustering
MB-OFDM, 254. See also Multiband orthogonal frequency division multiplexing
MCFA, 332. See also Minimum cost forwarding algorithm
MC-UWB, 439–440. See also MultiCarrier UWB

MDS, 268–269, 279. See also Multi-dimensional scaling

MECN, 84–87. See also Minimum energy communication network

Medium access control, 9, 15, 19, 29, 35

MEMS, 1, 9, 243, 343. See also

Microelectronic-mechanical systems

Message
 authentication code, 370, 376
 integrity code, 376
 passing, 43, 45
 scheduler, 57

Meta-data, 94–95

MFR, 78. See also Most forward with fixed radius

MIC, 376. See also Message integrity code

MicaZ, 437, 441, 454–456

Microelectronic-mechanical systems, 1, 243, 343

Micromachining
 bulk, 9
 planar, 9
 post-process, 9
 surface, 9

MiM, 378, 380, 399. See also

Man-in-the-middle

Minimum
 energy property, 87
 power configuration, 333
 power topology, 84–87
 transmission energy, 89

Minimum cost forwarding algorithm, 332

Minimum energy communication network, 84

Mini-Sync, 292–294

Mirollo-Strogatz, 303

MMD, 185, 187. See also Max-min D-clustering

MNL, 58. See also Minimum neighbor list

MNL, 269, 272. See also Multihop network localization

Mobile ad hoc networks, 1, 19

Mobile ubiquitous LAN extensions, 114

Mobility
 effect, 25
 group, 187
 handling mechanism, 47

individual, 187

sink, 113, 122–123

target, 121

Mode
 junction, 120
 non-replica, 120

Model(s)
 data delivery, 136
 Mirollo-Strogatz mathematical, 303
 traffic, 344

Monitoring
 ambulatory, 5
 battlefield, 4
 behavior, 5
 disaster, 4
 environmental, 1, 3, 369, 376
 habitat, 4, 28, 344
 hazard, 4
 medical, 5
 ocean-bottom, 449
 ocean-column, 449
 quality, 4

Most forward with fixed radius, 78

Moté(s), 11

iPAQ, 129

MPR, 151. See also Multipoint relaying

MRTA, 447. See also Multi-robot task allocation

MS, 303. See also Mirollo-Strogatz

MSKP, 395

MS-MAC, 46–47. See also Adaptive mobility-aware MAC protocol

MST, 147, 156–159, 162. See also Minimal spanning tree

MTE, 89–90. See also Minimum transmission energy

MULEs, 76, 114–115, 137. See also Mobile ubiquitous LAN extensions

Multiband orthogonal frequency division multiplexing, 254

Multicast
 centralized power-aware, 162
differential destination, 161
localized power-aware, 162
min-power, 147, 162
power-aware, 147, 162

Multicasting, 16, 145–149, 160–164, 166–168
location-based, 162
tree-based, 161
Multi-dimensional scaling, 268
Multihop
 chain, 48
 clustering architecture, 23–24
 communication, 21
 network(s), 22, 25–26, 31
 path, 22, 29, 47–48, 55, 58
 short-distance communication, 29
 short-range communication, 21, 31
Multimedia content, 434–438
 snapshot, 437
 streaming, 437
Multimedia coverage, 438
Multipath
 braided, 110, 137
 discovery, 110, 112
 idealized braided, 110, 137
 propagation, 451
Multiple access
 code division, 10
 dual busy tone, 329
 floor acquisition, 328
 frequency division, 10
 power controlled, 329
 spatial division, 10
 time division, 10
Multiple access with collision avoidance, 37, 319, 327
Multiple access with collision avoidance wireless, 319, 328
Multipoint relaying, 151
Multi-robot task allocation, 447

N
Neighbor
 discovery, 55
 protocol, 54
 set, 68, 72, 86
Neighbor list
 minimum, 58
 non-redundant, 58
 redundant, 57
nesC, 11
Network(s)
 allocation vector, 44
 applications, 3, 7, 10–11, 15
 architecture(s), 8, 15
 beacon-enabled, 412, 415, 424
 characteristics, 2, 7, 15
coding, 168
control and management, 19, 31
deterministic, 25
dynamics, 67, 73, 76, 138
flat, 174, 203
formation, 409, 419
heterogeneity, 73, 77, 138
heterogeneous, 26
hierarchical, 174, 176
homogeneous, 26
layering, 67, 73–74, 137–138
lossless, 95
lossy, 95
mobile, 25
mobile-sink, 25
multi-hop, 25–26
multisink, 25
nonbeacon-enabled, 413
non-deterministic, 25
non-self-configurable, 26
overlay, 118
point-to-point, 94
proactive, 91
reactive, 91
topology, 2, 7
security, 9, 15–16, 19, 22
self-reconfigurable, 26
single-hop, 25–26
single-sink, 25
static, 25
static-sink, 25
structure, 20
Newbury networks, 249
NLOS, 249, 251, 261, 279, 331. See also Non-LOS
NNL, 58. See also Non-redundant neighbor list
Node(s)
 clustering, 15–16
 compromise, 371, 393, 395–399
density, 7
deployment, 1–2, 6, 8
dissemination, 116–117
index, 122
localization, 15–16, 19, 22
mobility, 39
rendezvous, 107
replication, 389–390
Noise
- ambient, 451
- man-made, 451
Non-LOS, 249, 331
Non-repudiation, 370, 372, 384–385
NP, 54. See also Neighbor protocol
NTP, 288, 290, 296, 300. See also Network time protocol
NVA, 44. See also Network allocation vector

O
OFDM, 439–440, 461. See also Orthogonal frequency division multiplexing
OHC, 380–381. See also One-way hash chain
Omni-directional antenna, 146, 156
Omni-directional links, 9
One-way hash chain, 380
On-line minimum Steiner tree, 122 approximated, 122
ONMST, 122. See also On-line minimum Steiner tree enhanced, 122
Operation
- duty-cycle, 462
- fetch, 363
- pump, 363
- report, 363
Operators
- mathematical, 230
- query, 218, 222
- relational, 218
- sequence, 218
Optical
- communication, 9
- radiators, 9
- transmission, 9
Optimization
- cross-layer, 435, 461
- energy, 10
- query, 226, 239
- throughput, 461
Orthogonal frequency division multiplexing, 439
Orthogonal pseudo noise codes, 38–39
Overhearing, 41–42, 45–48
range, 47

P
Packet(s)
- injection, 376
- loss, 7
- modifications, 375
- reception rate, 461
- replaying, 385
Paging systems, 59
Pairwise
- authentication, 204
- cross-layer, 458, 460, 463
- resource allocation, 458
PAMAS, 319–321, 327–329
PanGo, 249
Pareto
- optimal, 127
- set, 127
PASA, 330–331. See also Power adaptation for starvation avoidance
Passive clustering for efficient flooding, 189
Path(s)
- braided, 110
- min-power paths, 156, 162
- node-disjoint, 110–112
- redundancy, 73, 75, 138
Pattern recognition, 257–258, 262
PCCP, 357–360, 365. See also Priority-based congestion control protocol
PCMA, 329–330. See also Power controlled multiple access
PCMs, 313, 327. See also Power conservation mechanisms
PDAs, 11. See also Personal digital assistants
PDU, 371–375. See also Protocol data unit
Peer-to-peer
- communication, 38–39, 58
- network, 39
PEGASIS, 89–91, 124, 136–137. See also Power-efficient gathering in sensor information systems
Period(s)
- contention access, 408, 410
- contention free, 408, 410
- random-access, 53
- scheduled-access, 53–54
Periodic message
 model, 57
 set, 57
Personal digital assistants, 11
Phase-locked loop, 318
PKI, 378. See also Public key
 infrastructure
PLL, 318. See also Phase-locked loop
Power
 conservation, 16
 consumption, 6, 9, 12, 437–440
 control, 16
PicoNode, 11
Piconet, 39
Pinpoint, 249
Platforms
 hardware, 10–12
 software, 10–12
POA, 248–249. See also Phase of arrival
Points
 access, 114–115
 cache, 354–355
 crossing, 115–116
 dissemination, 115–116
 grafting, 118
 loss, 354
 service access, 346
Point-to-point
 networks, 94
 transmission media, 94
Polite gossip, 357, 360
Power adaptation for starvation
 avoidance, 330
Power-aware sensor selection, 334
Power conservation mechanisms, 308, 313–314, 327, 337
 active, 308, 313–314, 327
 higher layer, 314, 320
 MAC layer, 314, 318
 passive, 313–315
 physical-layer, 314
Power-efficient gathering in sensor
 information systems, 89
P2P, 344. See also Peer-to-peer
 communications
Preamble
 sampling, 51, 59
 wake-up, 51, 59
Prim’s algorithm, 156
Privacy, 370–371, 373–374
Problem
 data forwarding interruption, 47
 discrete logarithm, 398
 elliptic curve discrete logarithm, 379
 energy management, 55
 energy sink-hole, 109, 113
 hidden terminal, 37, 44, 52
 throughput optimization, 461
Processes
 fabrication, 9
 micromachining, 9
Promiscuous listening, 159
Protocol(s)
 address-centric, 93
 ad hoc broadcast, 152
 broadcast/multicast authentication, 383
 cluster-head relay, 134
 communication, 7, 9–11
 core assisted mesh, 161
 data-centric, 93
 data MULES based, 114
 data unit, 371
 file transfer, 347
 heterogeneity-based, 129
 hybrid, 58
 information-driven sensor querying, 132
 joint mobility and routing, 113
 location-aided, 78
 location-aware routing, 118
 mobility-based protocols, 113
 multipath-based, 109
 multipath discovery, 110, 112
 network time, 288
 overlay multicast, 161
 priority-based congestion control, 358
 QoS based, 123
 query routing, 92
 quorum based, 107
 sensor transmission control, 336, 356, 364
 stack, 12–13, 15, 26–27
 stream control transmission, 346
 transport, 15–16
 tree-based multicasting, 121
Proxy
 sink, 121–123
 source, 121–123
PRR, 461. See also Packet reception rate
PS, 358. See also Probabilistic selection
PSFQ, 356, 361–363. See also Pump slowly fetch quickly
Public key infrastructure, 378
Pump slowly fetch quickly, 356, 362

Q
QoE, 275–278. See also Quality of estimate
QoL, 277. See also Quality of link
QoS support, 7
Quality of estimate, 275, 277
Quality of link, 277
Quality of service, 7, 16, 30, 39–41, 76, 123, 148, 343–344, 435
Query(ies)
answer, 217, 221, 224, 239
attributes, 220
dissemination, 28, 95
exploratory, 219
filtering, 219
flooding, 222
historical, 92, 219, 225
information, 133
information-driven sensor, 131
layer, 99
monitoring, 219
multidimensional, 220
non-aggregate, 101
non-filtering, 220
one-dimensional, 220
one-shot complex, 100
one-time, 92, 219
optimization, 226, 239
optimizer, 100
persistent, 92, 98, 219
plan, 100
probabilistic, 221
processing, 16, 100, 215–229, 239
proxy, 99, 104–106
range, 219, 237
request, 217, 220–222
response, 217, 219–220, 223, 234
routing, 80
spatial, 219
SQL, 217
subscription, 118
temporal, 219
two-tier, 115–116

R
Radio
channel, 20
connectivity, 55
frequency, 9
frequency identification, 231
jamming, 387–388
sensibility, 47
transceivers, 2, 13
RAND, 59
Random early detection, 364
Randomized waiting, 237
Random key pre-distribution, 393
Random-pairwise key, 393
Ranging
direct, 269–270
extended, 269, 271
RSS based, 254, 257
TOA based, 249–250, 252
ultra-wideband, 253–254
RATS, 301. See also Rate adaptive time synchronization
RBC, 361–362. See also Reliable bursty convergecast
RBS, 291–292, 295, 297–300, 303–304. See also Reference broadcast
synchronization
multihop, 295–296
RC5, 372
Received signal strength, 245
RED, 364. See also Random early detection
Reinforcement, 96, 109
alternate-path, 109–110
primary-path, 109–110
process, 109
Reliability, 7, 12
event-to-sink, 460
packet, 350, 353, 355, 361–362, 365
Reliable bursty convergecast, 362
Reliable multi-segment transport, 362
Remote metering, 6
Remote sensing, 4
Replica(s), 118–120
child, 120
gate, 118–120
junction, 120
replica placement, 120
Request-to-send, 37
Resource utilization, 28
Retransmission
distance, 349–350, 354
distance vector, 161
dynamic source, 82
dynamic voltage, 309, 375
energy aware, 332
energy-aware data-centric, 101
energy-aware data-centric, 101
energy aware, 332
fidelity, 78
geographic, 83, 97–98, 138
geographic, 83, 97–98, 138
dynamic source, 82
dynamic source, 82
data-centric, 22, 174
dynamic source, 82
dynamic source, 82
destination, 78
destination, 78
destination, 78
destination, 78
geographic multicast, 163
geographic and energy-aware, 80
geographic and energy-aware, 80
greedy geographic, 83
greedy other adaptive face, 78
greedy perimeter stateless, 78
information-directed, 103
information query, 133
inter-cluster, 178
inter-cluster, 178
joint, 458
location-aided, 74
location-aware, 78, 118
location-based, 78, 83
multicast-enabled ad-hoc on-demand
multihop flow, 461
multipath, 75, 82, 109–110, 125–128, 387
phantom, 374
round, 113
rumor, 98, 137
self-organizing, 335
tensor-disjoint multipath, 109
shortest path, 113
single-path, 109
RTS, 37, 43–45, 50. See also Request-to-send
RTT, 348, 352, 355. See also Round-trip time
RW, 237–238. See also Randomized waiting
S
Salvaging
alternate path, 112
per-hop packet, 112
Sampling schedule offsets, 51
SAPs, 346. See also Service access points
Scalability, 6, 22, 31
Scalable energy-efficient asynchronous dissemination, 117, 163
Schedule exchange protocol, 54
Scheduling
dynamic voltage, 309, 375
inter-node packet, 362
intra-node packet, 362
Remote metering, 6
Remote sensing, 4
Replica(s), 118–120
child, 120
gate, 118–120
junction, 120
replica placement, 120
Request-to-send, 37
Resource utilization, 28
Retransmission
distance, 349–350, 354
distance vector, 161
dynamic source, 82
dynamic voltage, 309, 375
energy aware, 332
energy-aware data-centric, 101
greedy geographic, 83
greedy other adaptive face, 78
geographic, 83, 97–98, 138
geographic, 83, 97–98, 138
dynamic source, 82
dynamic source, 82
destination, 78
destination, 78
destination, 78
destination, 78
geographic multicast, 163
geographic and energy-aware, 80
geographic and energy-aware, 80
greedy geographic, 83
greedy other adaptive face, 78
information-directed, 103
information query, 133
inter-cluster, 178
inter-cluster, 178
joint, 458
location-aided, 74
location-aware, 78, 118
location-based, 78, 83
multicast-enabled ad-hoc on-demand
distance vector, 161
multihop flow, 461
multipath, 75, 82, 109–110, 125–128, 387
phantom, 374
round, 113
rumor, 98, 137
self-organizing, 335
tensor-disjoint multipath, 109
shortest path, 113
single-path, 109
RTS, 37, 43–45, 50. See also Request-to-send
RTT, 348, 352, 355. See also Round-trip time
RW, 237–238. See also Randomized waiting
S
Salvaging
alternate path, 112
per-hop packet, 112
Sampling schedule offsets, 51
SAPs, 346. See also Service access points
Scalability, 6, 22, 31
Scalable energy-efficient asynchronous dissemination, 117, 163
Schedule exchange protocol, 54
Scheduling
dynamic voltage, 309, 375
inter-node packet, 362
intra-node packet, 362
Remote metering, 6
Remote sensing, 4
Replica(s), 118–120
child, 120
gate, 118–120
junction, 120
replica placement, 120
Request-to-send, 37
Resource utilization, 28
Retransmission
distance, 349–350, 354
distance vector, 161
dynamic source, 82
dynamic voltage, 309, 375
energy aware, 332
energy-aware data-centric, 101
greedy geographic, 83
greedy other adaptive face, 78
geographic, 83, 97–98, 138
geographic, 83, 97–98, 138
dynamic source, 82
dynamic source, 82
destination, 78
destination, 78
destination, 78
destination, 78
geographic multicast, 163
geographic and energy-aware, 80
geographic and energy-aware, 80
greedy geographic, 83
greedy other adaptive face, 78
information-directed, 103
information query, 133
inter-cluster, 178
inter-cluster, 178
joint, 458
location-aided, 74
location-aware, 78, 118
location-based, 78, 83
multicast-enabled ad-hoc on-demand
distance vector, 161
multihop flow, 461
multipath, 75, 82, 109–110, 125–128, 387
phantom, 374
round, 113
rumor, 98, 137
self-organizing, 335
tensor-disjoint multipath, 109
shortest path, 113
single-path, 109
RTS, 37, 43–45, 50. See also Request-to-send
RTT, 348, 352, 355. See also Round-trip time
RW, 237–238. See also Randomized waiting
S
Salvaging
alternate path, 112
per-hop packet, 112
Sampling schedule offsets, 51
SAPs, 346. See also Service access points
Scalability, 6, 22, 31
Scalable energy-efficient asynchronous dissemination, 117, 163
Schedule exchange protocol, 54
Scheduling
dynamic voltage, 309, 375
inter-node packet, 362
intra-node packet, 362
Scheduling (cont’d)
joint, 458
link, 324, 326
receiver-centric, 443
sleep mode TDMA, 320–321
TDMA, 320–323, 325–326
wave, 325
Scheduling TDMA MAC, 57
SCTP, 346, 364. See also Stream control
transmission protocol
SDAP, 389
SDMA, 10. See also Spatial division
multiple access
SEAD, 117–118, 163. See also Scalable
energy-efficient asynchronous
dissemination
SecLEACH, 204, 206, 208
Security
homeland, 369
network, 370, 385, 400
surveillance, 344
Select minimum neighbor, 58
Self-configurability, 6
Self-configuration, 19
Self-organizing medium access control,
55
Selection
epoch-based proportional, 358
probabilistic, 358
Sensing
range, 68
resolution, 57
Sensor(s)
backhaul, 130
battery-powered, 78, 129–130
exit, 105–107
extraction, 105
faulty, 72–73
ground, 3
light, 221, 227
line-powered, 129–130
pressure, 221
relay, 83–85
rendezvous, 108–109
seismic, 4
temperature, 221
transducer, 215
wearable, 5
wireless, 3–6
Sensor-MAC protocol, 43, 319
Sensor MAC protocol with a dynamic
duty cycle, 46
Sensor management protocol, 28
Sensor network(s)
heterogeneous, 174, 176
homogenous, 174
hybrid, 174, 176–177
Sensor protocols for information via
negotiation, 93
Sensor query and data dissemination
protocol, 28
Sensor query and tasking language, 28
SEP, 54. See also Schedule exchange
protocol
Shared belief, 49
Short-distance communication, 21–22, 31
Short-range
communication, 26, 29
radio, 20
Sift, 49–50
Signal attenuation, 8
Signal to noise ratio, 251
Signature, 370, 376–379, 382–385, 388
batch, 383–384
eLLiptic curve digital, 379
Single-hop
clustering architecture, 23
communication, 29
long-distance transmission, 21
network, 25–26
network architecture, 21, 22
Sink
onshore, 451
surface, 451
Siphon, 352, 357, 359–360
Skipjack, 373
Skyhook, 249
Sleep-wakeup cycle time, 46
Slot-by-slot renewal mechanism, 48
S-MAC, 43–46, 319–322. See also Sensor-
MAC protocol
SMACS, 55. See also Self-organizing
medium access control
Small minimum energy communication
network, 87
Smart Dust, 11, 31
SMECN, 87, 137. See also Small minimum
energy communication network
SMN, 58. See also Select minimum neighbor
SMP, 28. See also Sensor management protocol
Snapshot querying, 217, 225
SNR, 251–253. See also Signal to noise ratio
SoC, 11. See also System-on-chip
Span, 81–82. See also Coordination of power saving with routing
SPAN, 320, 326–327
Spatial correlations, 49
Spatio-temporal window, 223
SPIN, 93–95, 107, 137. See also Sensor protocols for information via negotiation
SPIN-1, 94–95
SPIN-2, 94–95
SPIN-BC, 95
SPIN-EC, 94
SPIN-PP, 94–95
SPIN-RL, 95
SQDDP, 28. See also Sensor query and data dissemination protocol
SQL, 217. See also Structured query language
SQTL, 28. See also Sensor query and tasking language
SR, 57. See also Sensing resolution
SS-TDMA, 323
STCP, 336–337, 356–357, 361, 364–366. See also Sensor transmission control protocol
Steiner node, 123
tree problem, 147
STP, 147. See also Steiner tree problem
Strategy flooding-and-then-prune, 162
neighbor elimination, 151
self-pruning, 152
Structure(s) cluster-based, 150, 152
cross-sectional, 155–156
diagonal-enabled, 155
grid-based propagation, 121
grid-based routing, 154
multicast, 147, 161
multicast delivery, 147, 162
Structured query language, 217
STWin, 223. See also Spatio-temporal window
Surface station, 451
Surveillance acoustic, 3
battlefield, 1–2, 28, 369
ocean, 3
Synchronization(s), 15–16, 19, 28 lightweight tree-based, 297
long-term, 290, 299–301
multihop, 290, 295–297, 304
pairwise, 295, 298, 304
post-facto, 300
primitives, 290, 303
rate adaptive, 301
reference broadcast, 291
slot, 53
Synchronization protocol adaptive-rate, 303
flooding time, 298
time-diffusion, 303
SYNC-IN, 302
SYNC-NET, 302
System-on-chip, 11
T
Target tracking, 344, 350
TBF, 82–83, 137. See also Trajectory-based forwarding
TCP, 28, 311, 335–336. See also Transmission control protocol
TDMA, 10, 35. See also Time division multiple access
scheduling algorithm, 320, 322–323, 325–326
self-stabilizing deterministic, 320
TDP, 300–302. See also Time-diffusion synchronization protocol
Technique asymmetric key, 377, 380–381, 390, 398
symmetric key, 379–380, 398
TEDS, 14. See also Transducer electronic data sheets
TEEN, 90–93, 137. See also Threshold sensitive energy efficient sensor network protocol
INDEX

TERRAIN, 272–275. See also
Triangulation via extended range and redundant association of intermediate nodes
Terrestrial sensor networks, 433, 450
TH-IR-UWB, 439–441, 443. See also
Time-hopping impulse radio UWB
Threshold
hard, 91–92
soft, 91–92
Threshold sensitive energy efficient sensor network protocol, 90
THS, 439–440. See also Time hopping sequences
Time division multiple access, 10, 35, 38–39, 53–61
Time hopping sequences, 439
Timeout-MAC, 50
Time series snapshot, 225–226
Timing-sync protocol for sensor networks, 290, 296
TinyDB, 221, 227–229
TinyGALS, 11
TinyOS, 11, 455
TinyPK, 378, 398
TinySec, 373, 377
Tiny-Sync, 292–294, 299
TLS/SSL, 398
T-MAC, 50. See also Timeout-MAC
TOA, 245–264, 267, 276, 279. See also Time of arrival
TORN, 57–58. See also Turning off redundant node
TPSN, 290, 296–298, 303–304. See also
Timing-sync protocol for sensor networks
Traffic-adaptive medium access, 53, 160
Trajectory-based forwarding, 82
TRAMA, 53–55, 160. See also Traffic-adaptive medium access
Transducer
data, 14
identification, 14
interface, 14
manufacturers, 14
Transducer electronic data sheets, 14
Transmitter-election algorithm, 53
Transport control protocol, 28, 311, 335
sensor, 336
Transport protocol(s), 28, 343–349, 355–357, 360–366
connectionless, 346–348
connection-oriented, 346–348
Tree(s)
binary decision, 227
breadth-first-search, 196
constructions, 163
data aggregation, 233, 446
discovery, 196
dissemination, 118
full Steiner, 123
localized minimal spanning, 158
Merkle, 379
minimal spanning, 147
min-power-path-based multicast, 162
min-power spanning, 147, 156, 162
most reliable spanning, 159
power, 147
proxy, 121–123, 137
reconfiguration, 121
spanning, 84, 101, 111
Steiner, 118, 121–123
Triangulation via extended range and redundant association of intermediate nodes, 273
Trickle, 357, 360
Trusted third party, 385
TTDD, 115, 117, 121, 137, 163. See also
Two-tier data dissemination
TTL-scoping, 161
TTP, 385. See also Trusted third party
Turning off redundant node, 57

U
UDP, 250, 254, 276. See also Undetected direct path
Ultra-wideband, 253, 437, 439
Uncertainty, 99, 134
Underwater acoustic sensor networks, 434, 448
Unicast, 159–165
recursive reliable, 159
reliable, 159–160
round robin reliable, 159–160
Unicast routing with area delivery, 164
Unit, 20–21
communication, 20–21
power, 20–21
processing, 20–21
sensing, 20–21
URAD, 164–165. See also Unicast routing
with area delivery
UW-ASNs, 434, 448–449, 453. See also
Underwater acoustic sensor networks
See also Ultra-wideband
time-carrier, 439
time-hopping impulse radio, 439

V
Variable speed processor, 315
Vertex-connectivity, 68
Voice over IP, 357
VoIP, 347. See also Voice over IP
Voronoi
cell(s), 135
diagram, 68–69, 83, 122
edges, 69
regions, 69
Voltage scheduler, 315
VS, 513. See also Voltage scheduler
VSP, 315. See also Variable speed processor

W
Wake-up schedule, 47–48
WBANs, 5. See also Wireless body area
networks
WCA, 183. See also Weighted clustering
algorithm
Wearnet, 249
WiFi, 14. See also IEEE 802.11
WinDepth, 223
Window-based congestion control
mechanisms, 28
WinFlood, 223
Wireless biosensor networks, 25
Wireless body area networks, 5
Wireless LAN(s), 37, 39, 42
module, 42
standard, 37
Wireless local area networks, 10, 31, 39,
244, 378
Wireless multimedia sensor networks, 345,
434, 436–437
Wireless personal area networks, 10,
408–409
Wireless sensor and actor Networks, 434,
443–444
Wireless sensor MAC, 51
Wireless underground sensor networks,
434, 453
WiseMAC, 51–52. See also Wireless sensor
MAC
WLANs, 10, 13, 31, 244, 257, 378. See also
Wireless local area networks
WLS, 258–262, 269, 272, 279. See also
Weighted least-squares
algorithm, 258, 260–261, 269,
272
WMSNs, 434–441, 466. See also Wireless
multimedia sensor networks
WPANs, 10, 12. See also Wireless personal
area networks
WSANs, 434, 443–446, 466. See also
Wireless sensor and actor networks
WUSNs, 434, 448, 453–454, 456. See also
Wireless underground sensor
networks

X
XLCU, 442. See also Cross-layer control
unit
XLM, 463. See also Cross-layer module
Z
ZDO, 418–419, 426, 428–430. See also
ZigBee device object
Zebra-MAC, 59
ZigBee, 13–15. See also IEEE 802.15.4
alliance, 13
device object(s), 418, 429
protocol stack, 407, 418
standard(s), 13, 15, 408, 418, 427
Z-MAC, 59–60. See also Zebra-MAC
Zone
packet forwarding, 165