CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>xxiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xxv</td>
</tr>
<tr>
<td>About the Editors</td>
<td>xxvii</td>
</tr>
<tr>
<td>Contributors</td>
<td>xxix</td>
</tr>
</tbody>
</table>

1. INTRODUCTION TO WIRELESS SENSOR NETWORKS

Jun Zheng and Abbas Jamalipour

1. Overview of Wireless Sensor Networks
 1.1 Network Characteristics
 1.2 Network Applications
 1.2.1 Environmental Monitoring
 1.2.2 Military Applications
 1.2.3 Health Care Applications
 1.2.4 Industrial Process Control
 1.2.5 Security and Surveillance
 1.2.6 Home Intelligence
 1.3 Network Design Objectives
 1.4 Network Design Challenges

2. Technological Background
 2.1 MEMS Technology
 2.2 Wireless Communication Technology
 2.3 Hardware and Software Platforms
 2.3.1 Hardware Platforms
 2.3.2 Software Platforms
 2.4 Wireless Sensor Network Standards
 2.4.1 The IEEE 802.15.4 Standard
 2.4.2 The ZigBee Standard
 2.4.3 The IEEE 1451 Standard
1.3 Features of This Book 15
1.4 Organization of This Book 15
References 16

2. NETWORK ARCHITECTURES AND PROTOCOL STACK 19
 Jun Zheng
2.1 Introduction 19
2.2 Network Architectures for Wireless Sensor Networks 20
 2.2.1 Sensor Node Structure 20
 2.2.2 Network Architectures 21
 2.2.2.1 Flat Architecture 22
 2.2.2.2 Hierarchical Architecture 22
2.3 Classifications of Wireless Sensor Networks 24
2.4 Protocol Stack for Wireless Sensor Networks 26
 2.4.1 Application Layer 28
 2.4.2 Transport Layer 28
 2.4.3 Network Layer 29
 2.4.4 Data Link Layer 29
 2.4.5 Physical Layer 30
2.5 Summary 31
References 31

3. MEDIUM ACCESS CONTROL 35
 Jun Zheng
3.1 Introduction 35
3.2 Fundamental MAC Protocols 36
 3.2.1 Contention-Based MAC Protocols 36
 3.2.2 Contention-Free MAC Protocols 38
3.3 MAC Design for Wireless Sensor Networks 39
 3.3.1 Network Characteristics 39
 3.3.2 Objectives of MAC Design 40
 3.3.3 Energy Efficiency in MAC Design 41
3.4 MAC Protocols for Wireless Sensor Networks 42
 3.4.1 Contention-Based Protocols 42
 3.4.1.1 S-MAC 43
 3.4.1.2 DS-MAC 46
 3.4.1.3 MS-MAC 46
 3.4.1.4 D-MAC 47
 3.4.1.5 Sift 49
References 50
3.4.1.6 T-MAC 50
3.4.1.7 WiseMAC 51
3.4.1.8 CSMA Based MAC with Adaptive Rate Control 52

3.4.2 Contention-Free Protocols 53
3.4.2.1 Traffic-Adaptive Medium Access 53
3.4.2.2 Self-Organizing Medium Access Control 55
3.4.2.3 Distributed Energy-Aware MAC 55
3.4.2.4 Implicit Prioritized MAC 56
3.4.2.5 Contention-Free Scheduling TDMA MAC 57
3.4.2.6 CDMA Sensor MAC 57

3.4.3 Hybrid Protocols 58
3.4.3.1 Spatial TDMA and CSMA Preamble Sampling 59
3.4.3.2 Z-MAC 59
3.4.3.3 Funneling-MAC 60

3.5 Summary and Future Directions 61

References 62

4. ROUTING AND DATA DISSEMINATION 67
Sajal K. Das and Habib M. Ammari

4.1 Introduction 67

4.2 Fundamentals and Challenges 68
4.2.1 Fundamentals 68
4.2.1.1 Terminology 68
4.2.1.2 Energy Model 70
4.2.2 Challenges 71
4.2.2.1 Sensor Characteristics 71
4.2.2.2 Field Nature 71
4.2.2.3 Network Characteristics 72
4.2.2.4 Sensing Application Requirements 72

4.3 Taxonomy of Routing and Data Dissemination Protocols 73
4.3.1 Location Information 74
4.3.2 Network Layering and In-Network Processing 74
4.3.3 Data Centricity 75
4.3.4 Path Redundancy 75
4.3.5 Network Dynamics 76
4.3.6 Quality of Service Requirements 76
4.3.7 Network Heterogeneity 77
4.4 Overview of Routing and Data Dissemination Protocols

4.4.1 Location-Aided Protocols

4.4.1.1 Geographic Adaptive Fidelity

4.4.1.2 Geographic and Energy-Aware Routing

4.4.1.3 Coordination of Power Saving with Routing

4.4.1.4 Trajectory-Based Forwarding

4.4.1.5 Bounded Voronoi Greedy Forwarding

4.4.1.6 Geographic Random Forwarding

4.4.1.7 Minimum Energy Communication Network

4.4.1.8 Small Minimum-Energy Communication Network

4.4.2 Layered and In-Network Processing-Based Protocols

4.4.2.1 Low-Energy Adaptive Clustering Hierarchy

4.4.2.2 Power-Efficient Gathering in Sensor Information Systems

4.4.2.3 Threshold Sensitive Energy Efficient Sensor Network Protocol

4.4.2.4 Adaptive Periodic TEEN

4.4.3 Data-Centric Protocols

4.4.3.1 Sensor Protocols for Information via Negotiation

4.4.3.2 Directed Diffusion

4.4.3.3 Rumor Routing

4.4.3.4 The Cougar Approach

4.4.3.5 Active Query Forwarding

4.4.3.6 Energy-Aware Data-Centric Routing

4.4.3.7 Information-Directed Routing

4.4.3.8 Quorum-Based Information Dissemination

4.4.3.9 Home Agent-Based Information Dissemination

4.4.4 Multipath-Based Protocols

4.4.4.1 Disjoint Paths

4.4.4.2 Braided Paths

4.4.4.3 N-to-1 Multipath Discovery
4.4.5 Mobility-Based Protocols

4.4.5.1 Joint Mobility and Routing Protocol 113
4.4.5.2 Data MULES Based Protocol 114
4.4.5.3 Two-Tier Data Dissemination 115
4.4.5.4 Scalable Energy-Efficient Asynchronous Dissemination 117
4.4.5.5 Dynamic Proxy Tree-Based Data Dissemination 121

4.4.6 QoS Based Protocols 123

4.4.6.1 Trade-Off between Energy Savings and Delay 124
4.4.6.2 Trade-Off between Energy Savings and Robustness 125
4.4.6.3 Trade-Off between Traffic Overhead and Reliability 127

4.4.7 Heterogeneity-Based Protocols 129

4.4.7.1 Benefits of Heterogeneity in Wireless Sensor Networks 129
4.4.7.2 Information-Driven Sensor Query 131
4.4.7.3 Constrained Anisotropic Diffusion Routing 132
4.4.7.4 Cluster-Head Relay Routing 134

4.4.8 Comparisons 136

4.5 Summary and Future Directions 137

References 139

5. BROADCASTING, MULTICASTING, AND GEOCASTING 145

Baoxian Zhang and Guoliang Xue

5.1 Introduction 145

5.2 Concepts and Major Challenges 146

5.2.1 Basic Concepts 146
5.2.2 Design Guidelines and Challenges 147

5.3 Broadcasting Mechanisms 149

5.3.1 Simple Broadcasting Mechanisms 149

5.3.1.1 Blind Broadcast 149
5.3.1.2 Probability-Based Broadcast 149
5.3.1.3 Distance-Based Broadcast 150
5.3.1.4 Area-Based Broadcast 150
5.3.1.5 Counter-Based Broadcast 150
5.3.2 Neighborhood-Aware Broadcasting Mechanisms 150
 5.3.2.1 Neighbor Elimination Strategy 151
 5.3.2.2 Connected-Dominating-Set-Based Broadcasting Strategy 151
 5.3.2.3 Cluster-Based Broadcasting Strategy 152
5.3.3 Location-Aided Broadcasting Mechanisms 153
 5.3.3.1 Integrated Distance and Angle-Based Broadcast 153
 5.3.3.2 Geographic Adaptive Fidelity 153
 5.3.3.3 Grid-Based Routing Structure 154
5.3.4 Energy-Efficient Broadcasting Mechanisms 156
 5.3.4.1 Broadcast Incremental Power 156
 5.3.4.2 Near-Maximum Lifetime Broadcast 157
 5.3.4.3 Min-Hop Maximum Residual Energy Broadcast 157
 5.3.4.4 Localized Power-Efficient Broadcast 158
5.3.5 Reliable Broadcasting Mechanisms 158
 5.3.5.1 Recursive Reliable Unicast 159
 5.3.5.2 Most Reliable Spanning Tree 159
 5.3.5.3 Integrated Round-Robin Reliable Unicast and Promiscuous Listening 159
 5.3.5.4 Broadcast with Selective Acknowledgments and Double Coverage 160
 5.3.5.5 TDMA Based Broadcast 160
5.4 Multicasting Mechanisms 160
 5.4.1 Tree-Based Multicasting Mechanisms 161
 5.4.1.1 Multicast-Enabled Ad Hoc On-Demand Distance Vector Routing 161
 5.4.1.2 Centralized Power-Aware Multicast 162
 5.4.1.3 Localized Power-Aware Multicast 162
 5.4.2 Location-Based Multicasting Mechanisms 162
 5.4.2.1 Scalable Energy-Efficient Asynchronous Dissemination 163
 5.4.2.2 Geographic Multicast Routing 163
 5.4.2.3 Two-Tier Data Dissemination 163
5.5 Geocasting Mechanisms 164
 5.5.1 Nonguaranteed Geocasting Mechanisms 164
 5.5.1.1 Unicast Routing with Area Delivery 164
 5.5.1.2 Directed-Flooding-Based Geocasting 165
 5.5.1.3 Performance Comparison 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.2</td>
<td>Guaranteed Geocasting Mechanisms</td>
<td>166</td>
</tr>
<tr>
<td>5.5.2.1</td>
<td>Simple Flooding</td>
<td>166</td>
</tr>
<tr>
<td>5.5.2.2</td>
<td>Geocasting via Efficient Broadcasting</td>
<td>166</td>
</tr>
<tr>
<td>5.5.2.3</td>
<td>Geocasting via Face Routing</td>
<td>166</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary and Future Directions</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>169</td>
</tr>
</tbody>
</table>

6. NODE CLUSTERING

Chao Zhang, Edwin Hou, and Nirwan Ansari

6.1 Introduction 173

6.1.1 Wireless Sensor Network Architectures 174

6.1.1.1 Homogenous Sensor Networks 174

6.1.1.2 Heterogeneous Sensor Networks 176

6.1.1.3 Hybrid Sensor Networks 176

6.1.2 Node Clustering Structures 178

6.1.2.1 Regularly Placed Nodes Deployment 179

6.1.2.2 Randomly Distributed Nodes Deployment 179

6.2 Node Clustering Algorithms 180

6.2.1 Cluster-Head Election Algorithms 181

6.2.1.1 Lowest ID Clustering Algorithm 181

6.2.1.2 Highest Connectivity Clustering Algorithm 182

6.2.1.3 Least Cluster Change Algorithm 182

6.2.1.4 Weighted Clustering Algorithm 183

6.2.2 Node Clustering Algorithms in Ad Hoc Networks 183

6.2.2.1 Linked Cluster Algorithm 184

6.2.2.2 Max–Min D-Clustering Algorithm 185

6.2.2.3 Mobility-Based Clustering Algorithm 187

6.3 Node Clustering Algorithms for Wireless Sensor Networks 188

6.3.1 Specialties for Clustering in Wireless Sensor Networks 188

6.3.2 Passive Clustering for Efficient Flooding 189

6.3.3 Energy-Efficient Adaptive Clustering 193

6.3.4 Energy-Efficient Distributed Clustering 195

6.3.5 Energy-Efficient Hierarchical Clustering 196

6.3.5.1 Multitier Hierarchical Clustering 196

6.3.5.2 Energy-Efficient Hierarchical Clustering 197

6.3.5.3 Distributed Weight-Based Hierarchical Clustering 199
6.3.6 Algorithm for Cluster Establishment 201
6.3.7 Secure Clustering 203
6.4 Summary and Future Directions 208
References 209

7. QUERY PROCESSING AND DATA AGGREGATION 215
Torsha Banerjee and Dharma P. Agrawal

7.1 Introduction 215
7.2 Query Processing in Wireless Sensor Networks 217
 7.2.1 Query Characteristics 217
 7.2.1.1 Query Operators 218
 7.2.1.2 Query Classification 218
 7.2.2 Challenges in Query Processing 220
 7.2.3 Sensor Selection for Query Processing 221
 7.2.4 Query Processing Techniques 222
 7.2.4.1 Query Flooding 222
 7.2.5 Snapshot Querying 225
 7.2.5.1 Acquisitional Query Processing 226
7.3 Data Aggregation in Wireless Sensor Networks 229
 7.3.1 Challenges in Data Aggregation 229
 7.3.2 Data Aggregation Techniques 230
 7.3.2.1 Energy-Efficient Data Aggregation 230
 7.3.2.2 Neural-Network-Based Data Aggregation 232
 7.3.2.3 Delay-Constrained Data Aggregation 233
 7.3.2.4 QoS Constrained Data Aggregation 235
 7.3.2.5 Data Aggregation for Range Query 237
 7.3.2.6 Structure-Free Data Aggregation 237
7.4 Summary and Future Directions 239
References 240

8. NODE LOCALIZATION 243
Nayef A. Alsindi and Kaveh Pahlavan

8.1 Introduction 243
8.2 Concepts and Challenges of Node Localization Technologies 244
 8.2.1 Evolution of Localization Technologies 244
 8.2.2 Localization Systems 245
 8.2.3 Challenges of Node Localization in Wireless Sensor Networks 247
CONTENTS

8.3 Ranging Techniques for Wireless Sensor Networks 248
 8.3.1 TOA Based Ranging 249
 8.3.1.1 Direct Spread Spectrum 253
 8.3.1.2 Ultra-Wideband Ranging 253
 8.3.2 RSS Based Ranging 254
8.4 Wireless Localization Algorithms 257
 8.4.1 Background 258
 8.4.2 Geometrical Triangulation Techniques 258
 8.4.2.1 Least-Squares Algorithm 259
 8.4.2.2 Weighted Least-Squares Algorithm 260
 8.4.2.3 Practical Performance Considerations 261
 8.4.3 Pattern Recognition Techniques 262
8.5 Wireless Sensor Node Localization 262
 8.5.1 Cooperative Localization 263
 8.5.2 Centralized Localization Algorithms 267
 8.5.3 Distributed Localization Algorithms 269
 8.5.3.1 Multihop Network Localization 272
 8.5.3.2 Recursive Position Estimation 275
8.6 Summary and Future Directions 279
References 280

9. TIME SYNCHRONIZATION 285
 Fikret Sivrikaya and Bülent Yener

9.1 Introduction 285
 9.1.1 Computer Clocks and the Synchronization Problem 286
 9.1.2 Common Challenges for Synchronization Methods 287
9.2 Need for Synchronization in Wireless Sensor Networks 288
9.3 Requirements of Synchronization in Wireless Sensor Networks 289
9.4 Synchronization Protocols for Wireless Sensor Networks 290
 9.4.1 Synchronization Primitives 290
 9.4.1.1 Two-Way Message Exchange 290
 9.4.1.2 Reference Broadcast Synchronization 291
 9.4.1.3 Tiny-Sync and Mini-Sync 292
 9.4.2 Multihop Synchronization 295
 9.4.2.1 Multihop RBS 295
 9.4.2.2 Timing-Sync Protocol 296
 9.4.2.3 Lightweight Tree-Based Synchronization 297
 9.4.2.4 Flooding Time Synchronization Protocol 298
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.3 Long-Term Synchronization</td>
<td>299</td>
</tr>
<tr>
<td>9.4.3.1 Post-facto Synchronization</td>
<td>300</td>
</tr>
<tr>
<td>9.4.3.2 Time-Diffusion Synchronization Protocol</td>
<td>300</td>
</tr>
<tr>
<td>9.4.3.3 Rate Adaptive Time Synchronization</td>
<td>301</td>
</tr>
<tr>
<td>9.4.4 Other Protocols and Relevant Work</td>
<td>302</td>
</tr>
<tr>
<td>9.5 Summary and Future Directions</td>
<td>303</td>
</tr>
<tr>
<td>References</td>
<td>305</td>
</tr>
</tbody>
</table>

10. ENERGY EFFICIENCY AND POWER CONTROL
Nikolaos A. Pantazis and Dimitrios D. Vergados

10.1 Introduction | 307 |
10.2 Need for Energy Efficiency and Power Control in Wireless Sensor Networks | 308 |
10.2.1 Power Consumption in Sensor Nodes	308
10.2.2 Power Control at Different Protocol Layers	311
10.2.3 Classification of Power Conservation Mechanisms for Wireless Sensor Networks	313
10.3 Passive Power Conservation Mechanisms	314
10.3.1 Physical-Layer Power Conservation Mechanisms	314
10.3.1.1 Dynamic Voltage Scheduling	315
10.3.1.2 Dynamic Power Management	315
10.3.1.3 Embedded Power Supply for Low-Power Digital Signal Processors	317
10.3.1.4 Energy-Efficient System Partitioning	317
10.3.1.5 Energy-Efficient Link Layer	318
10.3.2 MAC Layer Power Conservation Mechanisms	318
10.3.3 Higher Layer Power Conservation Mechanisms	320
10.3.3.1 Sensor-MAC	320
10.3.3.2 Energy Efficiency Using Sleep Mode TDMA Scheduling	321
10.3.3.3 SS-TDMA: A Self-Stabilizing MAC	323
10.3.3.4 Link Scheduling	324
10.3.3.5 Energy-Latency Trade-Offs for Data Gathering	324
10.3.3.6 TDMA Scheduling	325
10.3.3.7 Wave Scheduling	325
10.3.3.8 Joint Optimization with Energy Constraints	326
10.3.3.9 Energy-Efficient Coordination for Topology Maintenance	326
10.4 Active Power Conservation Mechanisms

10.4.1 MAC Layer Mechanisms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.1.1 Multiple Access with Collision Avoidance Wireless</td>
<td>327</td>
</tr>
<tr>
<td>10.4.1.2 Multiple Access with Collision Avoidance Wireless</td>
<td>328</td>
</tr>
<tr>
<td>10.4.1.3 Floor Acquisition Multiple Access</td>
<td>328</td>
</tr>
<tr>
<td>10.4.1.4 Intelligent Medium Access with Busy Tone and Power Control</td>
<td>328</td>
</tr>
<tr>
<td>10.4.1.5 Power Controlled Multiple Access</td>
<td>329</td>
</tr>
<tr>
<td>10.4.1.6 Power Adaptation for Starvation Avoidance</td>
<td>330</td>
</tr>
</tbody>
</table>

10.4.2 Network Layer Mechanisms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.2.1 Minimum Cost Forwarding</td>
<td>332</td>
</tr>
<tr>
<td>10.4.2.2 Energy Aware Routing</td>
<td>332</td>
</tr>
<tr>
<td>10.4.2.3 Minimum Power Configuration</td>
<td>333</td>
</tr>
<tr>
<td>10.4.2.4 Cost-Effective Maximum Lifetime Routing</td>
<td>333</td>
</tr>
<tr>
<td>10.4.2.5 Power-Aware Sensor Selection</td>
<td>334</td>
</tr>
<tr>
<td>10.4.2.6 Self-Organizing Routing</td>
<td>335</td>
</tr>
</tbody>
</table>

10.4.3 Transport Layer Mechanisms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.3.1 Experimental Study on TCP’s Energy Consumption</td>
<td>335</td>
</tr>
<tr>
<td>10.4.3.2 Reliable and Energy-Efficient Transport Protocol</td>
<td>336</td>
</tr>
<tr>
<td>10.4.3.3 Sensor Transmission Control Protocol</td>
<td>336</td>
</tr>
</tbody>
</table>

10.5 Summary

References 337

11. TRANSPORT PROTOCOLS AND QUALITY OF SERVICE

Chonggang Wang, Bo Li, and Kazem Sohraby

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>343</td>
</tr>
<tr>
<td>11.2 Traditional Transport Protocols</td>
<td>346</td>
</tr>
<tr>
<td>11.2.1 Principles of Traditional Transport Protocols</td>
<td>346</td>
</tr>
<tr>
<td>11.2.2 Disadvantages of TCP and UDP</td>
<td>347</td>
</tr>
<tr>
<td>11.3 Transport Protocol Design for Wireless Sensor Networks</td>
<td>349</td>
</tr>
<tr>
<td>11.3.1 Performance Metrics</td>
<td>349</td>
</tr>
<tr>
<td>11.3.2 Congestion Control</td>
<td>351</td>
</tr>
<tr>
<td>11.3.2.1 Congestion Detection</td>
<td>351</td>
</tr>
<tr>
<td>11.3.2.2 Congestion Notification</td>
<td>351</td>
</tr>
<tr>
<td>11.3.2.3 Congestion Mitigation and Avoidance</td>
<td>352</td>
</tr>
</tbody>
</table>
11.3.3 Loss Recovery
 11.3.3.1 Loss Detection and Notification 353
 11.3.3.2 Retransmission Recovery 354
11.3.4 Design Guidelines 355

11.4 Transport Protocols for Wireless Sensor Networks 356
 11.4.1 Protocols for Congestion Control 356
 11.4.1.1 Fusion 358
 11.4.1.2 Congestion Detection and Avoidance 358
 11.4.1.3 Congestion Control and Fairness 358
 11.4.1.4 Priority-Based Congestion Control Protocol 358
 11.4.1.5 Adaptive Rate Control 359
 11.4.1.6 Siphon 359
 11.4.1.7 Trickle 360
 11.4.2 Protocols for Reliability 360
 11.4.2.1 Reliable Multi-Segment Transport 362
 11.4.2.2 Reliable Bursty Convergecast 362
 11.4.2.3 Pump Slowly Fetch Quickly 362
 11.4.2.4 GARUDA 363
 11.4.3 Protocols for Congestion Control and Reliability 363
 11.4.3.1 Sensor Transmission Control Protocol 364
 11.4.3.2 Event-to-Sink Reliable Transport 364
 11.4.4 Open Problems 365

11.5 Summary and Future Directions 366

References 366

12. NETWORK SECURITY AND ATTACK DEFENSE 369
 Yun Zhou and Yuguang Fang
 12.1 Introduction 369
 12.2 Confidentiality 370
 12.2.1 Eavesdropping 371
 12.2.2 Node Compromise 371
 12.2.3 Encryption 372
 12.2.4 Privacy 373
 12.3 Integrity 374
 12.3.1 Transmission Errors 374
 12.3.2 Processing Errors 375
 12.3.3 Packet Modifications 375
 12.3.4 Error Control 375
 12.3.5 Message Integrity Code 376
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>Authenticity</td>
<td>376</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Packet Injection</td>
<td>376</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Message Authentication Code</td>
<td>376</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Challenge Response</td>
<td>377</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Signature</td>
<td>377</td>
</tr>
<tr>
<td>12.4.5</td>
<td>Man-in-the-Middle</td>
<td>377</td>
</tr>
<tr>
<td>12.4.6</td>
<td>Authenticating Public Key</td>
<td>378</td>
</tr>
<tr>
<td>12.4.7</td>
<td>Broadcast and Multicast Authentication</td>
<td>380</td>
</tr>
<tr>
<td>12.5</td>
<td>Nonrepudiation</td>
<td>384</td>
</tr>
<tr>
<td>12.6</td>
<td>Freshness</td>
<td>385</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Packet Replaying</td>
<td>385</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Timestamp</td>
<td>386</td>
</tr>
<tr>
<td>12.7</td>
<td>Availability</td>
<td>386</td>
</tr>
<tr>
<td>12.7.1</td>
<td>Selective Forwarding</td>
<td>387</td>
</tr>
<tr>
<td>12.7.2</td>
<td>Radio Jamming</td>
<td>387</td>
</tr>
<tr>
<td>12.7.3</td>
<td>Multipath Routing</td>
<td>387</td>
</tr>
<tr>
<td>12.7.4</td>
<td>False Reports</td>
<td>388</td>
</tr>
<tr>
<td>12.7.5</td>
<td>Node Replication</td>
<td>389</td>
</tr>
<tr>
<td>12.8</td>
<td>Intrusion Detection</td>
<td>390</td>
</tr>
<tr>
<td>12.9</td>
<td>Key Management</td>
<td>391</td>
</tr>
<tr>
<td>12.9.1</td>
<td>Symmetric Key Management</td>
<td>391</td>
</tr>
<tr>
<td>12.9.1.1</td>
<td>Key Agreement Models</td>
<td>392</td>
</tr>
<tr>
<td>12.9.1.2</td>
<td>Random Key Material Distribution</td>
<td>393</td>
</tr>
<tr>
<td>12.9.1.3</td>
<td>Deterministic Key Material Distribution</td>
<td>394</td>
</tr>
<tr>
<td>12.9.1.4</td>
<td>Location-Based Key Material Distribution</td>
<td>395</td>
</tr>
<tr>
<td>12.9.1.5</td>
<td>Comparison of Symmetric Key Schemes</td>
<td>396</td>
</tr>
<tr>
<td>12.9.2</td>
<td>Asymmetric Key Management</td>
<td>398</td>
</tr>
<tr>
<td>12.9.3</td>
<td>Group Key Management</td>
<td>399</td>
</tr>
<tr>
<td>12.10</td>
<td>Summary</td>
<td>400</td>
</tr>
</tbody>
</table>

Acknowledgments | 400
References | 400

13. **SENSOR NETWORK STANDARDS**

Stefano Chessa

13.1 Introduction | 407
13.2 IEEE 802.15.4 Standard | 408
| 13.2.1 Overview of the MAC Layer | 409
| 13.2.2 Channel Access | 410
CONTENTS

13.2.2.1 Communications with a Superframe Structure 410
13.2.2.2 Communications without a Superframe Structure 411

13.2.3 Data-Transfer Models 411
13.2.3.1 Data Transfers in Beacon-Enabled Networks 412
13.2.3.2 Data Transfers in Nonbeacon-Enabled Networks 413

13.2.4 MAC Layer Services 414
13.2.4.1 Data Service 414
13.2.4.2 Management Service 415

13.2.5 Security 417

13.3 ZigBee Standard 418
13.3.1 Network Layer 418
13.3.1.1 Network Formation 419
13.3.1.2 Joining a Network 420
13.3.1.3 Routing 423
13.3.1.4 Route Discovery 424
13.3.2 Application Layer 426
13.3.2.1 Application Framework 426
13.3.2.2 Binding and Discovery Services 427
13.3.2.3 Application Support Sublayer 428
13.3.2.4 ZigBee Device Object 429

13.3.3 Security in ZigBee 430

13.4 Summary 430

References 431

14. FUTURE TRENDS IN WIRELESS SENSOR NETWORKS 433

Mehmet Can Vuran, Dario Pompili, and Tommaso Melodia

14.1 Introduction 433

14.2 Wireless Multimedia Sensor Networks 434
14.2.1 Applications of Wireless Multimedia Sensor Networks 436
14.2.2 Design of Wireless Multimedia Sensor Networks 437
14.2.3 Ultra-Wideband Technology 439
14.2.4 Cross-Layer Design 441

14.3 Wireless Sensor and Actor Networks 443
14.3.1 Applications of Wireless Sensor and Actor Networks 444
14.3.2 Sensor and Actor Coordination 445
14.3.2.1 Sensor–Actor Coordination 445
14.3.2.2 Actor–Actor Coordination 447

14.4 Sensor Network Applications in Challenging Environments 448
14.4.1 Underwater Acoustic Sensor Networks 448
 14.4.1.1 Differences from Terrestrial Sensor Networks 450
 14.4.1.2 Factors Influencing the Design of Underwater Protocols 450
 14.4.1.3 Communication Architectures 451
14.4.2 Wireless Underground Sensor Networks 453
 14.4.2.1 Experimental Setup 454
 14.4.2.2 Physical Environment 455
 14.4.2.3 MicaZ Wireless Sensor Motes 455
 14.4.2.4 Software Design 455
 14.4.2.5 Experimental Results 455

14.5 Cross-Layer Design for Wireless Sensor Networks 456
14.5.1 Cross-Layer Resource Allocation 457
 14.5.1.1 Pairwise Resource Allocation 458
 14.5.1.2 Joint Routing, Scheduling, and Power Control 458
 14.5.1.3 Joint Resource Allocation Based on Dual Decomposition 459
14.5.2 Pairwise Cross-Layer Protocols 460
 14.5.2.1 Transport and PHY Interactions 460
 14.5.2.2 Routing and PHY Interactions 461
 14.5.2.3 MAC and PHY Interactions 461
 14.5.2.4 MAC and Routing Interactions 462
14.5.3 Cross-Layer Module Design 463
14.5.4 Precautionary Guidelines and Open Research Problems 464

14.6 Summary 466
Acknowledgments 466
References 466

Index 471