Index

References to figures are given in italic type. Preferences to tables are given in bold type.

- acetylcholine 197
- ADP (adenosine diphosphate) 6–7
- aerogels 97
- agarose gel 33–34, 95–96
 - in 3D RD fabrication 228–230
 - mold preparation 101–102
 - see also WETS
- alternating direction implicit (ADI) method 82–83
- m-aminobenzamidine 221
- AMP (adenosine monophosphate) 55
- amplification (of materials properties) 195–197
- RD micronetworks 197–202
- angelfish 8
- animate systems, overview 5–8
- applications, overview 9–12
- aspirin 53
- ATP (adenosine triphosphate) 6–7, 55
- backward time centered space (BTCS) differencing 81–82
- wave emission 213–215
- WETS patterning 210–211
- Bessel functions 36–37
- binding constants 222
- proteins 219–221
- blood 52
- Briggs-Rauscher reaction 56–57, 216
- Brownian motion 17, 42–43
- Brusselator 55–56, 57
- Buckle Finder software 120
- buckled surfaces 118–121, 119, 152–160
 - applications 155–158
- tert-butyl chloride 48
- Belousov, Boris 5
- Belousov-Zhabotinsky oscillator 208
- diffusive coupling 212–213
- kinetics 211–212
- Cahn-Hilliard equation 132
- calcium phosphate 51
- calcium signalling (in cell) 5–6
- calcium sulfate 51
- cAMP 195–196
- catalysis 9–11
 - autocatalytic reactions 52–55
 - packed-bed reactors 9–10
 - using core-and-shell particles 237–238
- caterpillar micromixer 123

Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology Bartosz A. Grzybowski
© 2009 John Wiley & Sons, Ltd
cells (living)
cultured on SAMs 183
feedback systems 5–6
grown on wrinkled substrates 156–157
motility mechanism 185
optical imaging 184
regulatory processes and RD 5–8
chameleons 196–197, 196
chemical equilibrium 50–51
chemical plating see electroless plating
chemical reactions
autocatalytic 52–54
autoinhibiting 54–55
equilibrium 50–51
galvanic replacement 248–253
ionic 51–52
oscillating 55–57
rates 45–49
cobalt, interdiffusion with sulfur 242–246
computing times, Crank-Nicholson
modeling 137
COMSOL software 70, 71
concentration profiles 21, 29
continuous random time walk 40–42, 43
convolution, Laplace transforms 27
cooperativity 53–54
coordinate systems
cylindrical and spherical 34–38
rectangular 20–34
copper, electroless plating 166–167
core-and-shell particles (CSP)
total exchange 236–238
formation of crystals from 238–240
spherical, inside cubes 228–230
Crank-Nicholson modeling 84, 220
periodic precipitation 137
crystals, from CSPs 238–240
CSP see core-and-shell particles
CTRW (continuous random time walk)
formalism 40–42, 43

damköhler number 64, 232
and metal core properties in 3D
etching 233, 234
dentistry 216
dermatology 216
Dictyostelium discoideum 8
partial differential equations see
differential equations
differentiation, Laplace transforms 27
diffraction gratings 145
diffraction structures 145–152, 146
pattern calculation 149–152
substrate patterning 146
diffusion
diffusive flux 18
‘drift’ 41
governing equation 17–20
governing equations
boundary conditions 24–26
solution
by Laplace transforms 26–29
by separation of variables 21–26
Stokes-Einstein equation 176
in nonhomogeneous media 38–43
in solids see Kirkendall effect
symmetry in solution of governing
equations 31–34
in a thin tube 18
finite 31–33
infinite 28–29, 30–31
varing constants 258
drag 176
drugs, delivery systems 37–38
electroless plating 166–167
RD in gels 172–178
RD in plating solution 167–172
electrolytes
concentration, and periodic
precipitation pattern
geometry 142–144
for periodic precipitation 128
and PP buckling 155
equilibrium reactions 50–51
etching 178–180
governing equations 178–180
in 3 dimensions 230
for cell biology 184–186
conductive oxides 187–188
glass 189–192
three-dimensional 230–235
reaction rates 232–233

fabrication
3D structures
nanocages 248–253
spheres inside cubes 228–235
structures inside non-cubical
particles 235
using Kirkendall effect 246

advantages of RD 11–12
disjoint features 117–121
gel stamps 98–101
microlenses 105–109, 111–117
micromixers 122–124
optical diffraction structures 145–152
feedback reactions 55
FEM 70–80
Fick, Adolf 18
Fick’s law 18–19, 39
finite difference (FD) analysis 66–70
finite element analysis 70–80
Galnerkin method 74
focal adhesions 185
Fokker-Planck diffusion 43
formaldehyde 213–214
fortifications 7
forward time centered space (FTCS)
 differencing 81
Fourier series 22–23
Fresnel zone plate (FZP) 147, 147–149
 with buckled surfaces 157–158
Fresnel-Kirchoff modeling 150
Galerkin finite element analysis 73–75
gallium arsenide, microetching 188–189
gudelflaschen 225
gel electrophoresis 96
gelatin 94–95
gels 93
capsules 37–38
choice for WETS 94–97
crosslinking 147, 155
 and periodic precipitation 142
definition 57
in electroless metal deposition 173–177
for periodic precipitation 128
reaction rates 57–59
giraffes 8
glass
gel etching 181
microetching 189–192
glycolysis 55
gold
gel etching 180, 181
nanoframe fabrication 248–251
as self-assembled monolayer (SAM)
 substrate 182
gradient control 258, 260
Heaviside step function 86–87
hemoglobin 53–54
hexacyanoferrate 105–109
hydrofluoric acid 181, 189
hydrogel stamps 100–101
IBM Power6 processor 121
indium-tin oxide 187
integration, Laplace transforms 27
interpolating functions 71
iodide 180
ionic reactions 51–52
IP3 messenger 5–6
iron(III) chloride, reaction-
diffusion 197–202
KFN model 211–212
Kipling, Rudyard 89–90
Kirkendall, Ernest 240
Kirkendall effect 240–248
 basic mechanism 241–242
laminar flow 122
Laplace equation 21
Laplace transforms 26–29, 27
lattice gas automata (LGA) 88–89
 microlens fabrication 111–117
 and Monte Carlo modeling 116–117
le Duc, Stephane 2
lenses see microlenses
Liesegang, Raphael 2–3
Liesegang rings 2
linear superposition 34
lithium chloride 51
lymphocytes 197

Matalon-Packter law 129
and PP feature geometry 139
Matlab 23
metal foils
microstructuring 181–186
overview 165–172
reaction-diffusion
in plating solution 167–172
in substrate 172–178
standard fabrication 165–166
methanol 215
microfabrication see fabrication
microfluidic devices 121–124, 189
microlenses 104, 189, 190
fabrication 105–109
by lattice gas modeling 111–117
Fresnel zone plate (FZP) 147–149,
148
shape optimization using Monte Carlo techniques 116–117
micromixers 189
fabrication 122–124
microprocessors 104
microtubules 7, 185
migraine headaches 7
minerals 9
miniaturization 103–104
Minotaur 68–70
mixers see micromixers
molds 100, 101–102
molecular manipulation 259–260
Monte Carlo simulation 112–113
multilevel surfaces 119
myocardiac tissue 7
	nanocages 248–253

nanowrinkles 152–160
noise 135
and time-reversibility 114–115
nonlinear amplification 12,
195–196
applications 215–222
by RD micrornetworks 197–202

using low-symmetry networks
203–205

optics
analogy to periodic precipitation mechanisms 144–145
diffraction structures 145–152
see also microlenses
oscillatory reactions 5–6, 55–57
see also Belousov-Zhabotinsky oscillator
Ostwald, Wilhelm 129
Ostwald-Liesegang mechanisms 9
PAAm (polyacrylamide) 96–97
packed-bed reactors 9–10
parallel chemistries 257–258
parallel-ridge micromixer 121–122
partial differential equations
solution by Laplace transforms 26–29
solution by separation of variables 20–26
PDMS (polydimethylsiloxane)
in 3D RD fabrication 229–230
WETS 100, 101
periodic precipitation (PP)
analogy with optics 144–145
at nanoscale 160
diffraction pattern calculation
149–152
explanatory models 129–130
fabrication of optical diffraction structures 145–152
gel crosslinking 142
gel thickness 140–141
governing equations 130–137
immobile precipitate 135
integration with other microfabrication techniques 158–160
overview 127
patterns in two dimensions
overview 137–139
feature dimensions and spacing 139–140
and gel crosslinking 142
patterns in two-dimension 143
phenomenology 128–130
and SAM detection 205–208
simulation time 137
stacked 159–160
stochastic effects 135–137
three-dimensional patterns 152–160
via spinodal decomposition 131–134
and WETS 137–138
photolithography
limitations 103–104
and wet stamp fabrication 98–100
photomask preparation, WETS 98–99
polyacrylamide 96–97
polydimethylsiloxane see PDMS
PP see periodic precipitation
precipitation
bands, scaling laws 129
time discretization 86–87
see also periodic precipitation
proteins
binding constants 219–221
crystal growth control 260

Rat2 fibroblast cells 156
rational design 109–111
RD see reaction-diffusion
reaction rates 45–49
autocatalysis 52–55
in gels 57–59
non-apparent reaction orders 46–47
oscillating reactions 55–57
sequential reactions 49
three-dimensional etching 232–233
reaction-diffusion (RD)
applications, future prospects 258–263
governing equations
general form 61–62
susceptible to analytic solution 62–66
finite difference methods 66–70
finite element analysis 70–80
for gel etching 178–180
mesoscopic models 87–90, 87
precipitation reactions 86–87
in 3 dimensions 230–235
time discretization 80–87
backward time centered space (BTCS) differencing 81–82
method of lines 84–85
operator splitting 83–84
see also diffusion
electroless deposition
in gels 172–178
in plating solution 167–172
history 1–3
in inanimate systems 9–12
initiation 93–94
and metal film deposition 167–172
in nature 4–9, 4
and nonlinear amplification
mechanisms 197–202
solid-state 259
theoretical challenges 262–263
see also periodic precipitation
refraction 144
roughness, of gel surface 172–178
Runga-Kutta method 84
seashells 9
self-assembled monolayers (SAM)
182–184, 205–208
cell cultures 183
self-assembly 261
aggregates of CSPs 238–240
sensors
formaldehyde and methanol 208–210
as measurement devices 216–217
optical 148–149
outlook 215–222
protein-ligand binding 217–219
for self-assembled monolayers
205–208, 207
shape functions 71
silica gels 97
silicon, gel etching 181
silver nitrate 105–109
skin patterns 8
Snell’s law 144
solids, diffusion 240–248
solubility, ionic compounds 51–52
spacing law, precipitation bands 129
spatial discretization
finite difference analysis 66–70
finite element analysis 70–77
spinodal decomposition 131–134
SPR spectroscopy 248
square features 119–121
squid 196
stalactites 9
stochastic effects, periodic precipitation 135
stoichiometry 46
Stokes-Einstein equation 175, 176
substrates
 buckling parameters 153–155
 for cell culture 156–157
 electroless plating 172–178
 for SAMs 182
sulfur, interdiffusion with cobalt 242–246
superposition 34, 186
supersaturation 129
surface plasmon resonance (SPR) 248
Sylgael 184 (PDMS) 100, 101
symmetry, and diffusion modeling 31–34
temporal discretization 80–87
tessellations 198–202
tetrahydrofuran (THF) 229–230
TFA 182
TGFβ (transforming growth factor) 8
 THF 229–230
thiols, detection 205–208
tigers 8
tile-centred tessellation 198, 199
tilings 198–202
time discretization, Crank-Nicholson method 82–83
time-reversibility 112, 114–115
tin, electroless plating, reaction-diffusion mechanisms 166
translation, Laplace transforms 27
Turing, Alan 5, 89
Tyson scaling 212
Voronoi tesselation 198
WETS (wet stamping) 94
Belousov-Zabotinsky oscillators 208, 210–211
diffusion 106–107
and metal oxide etching 187
and periodic precipitation 137–139
stamp fabrication 98–101, 99
width law
 periodic precipitation 129
 precipitation bands 129
 Winfree solution 210
xerogels 97
zebras 8, 89–90
zinc oxide 187