Contents

Preface xi
List of Boxed Examples xiii

1 Panta Rei: Everything Flows 1
1.1 Historical Perspective 1
1.2 What Lies Ahead? 3
1.3 How Nature Uses RD 4
1.3.1 Animate Systems 5
1.3.2 Inanimate Systems 8
1.4 RD in Science and Technology 9
References 12

2 Basic Ingredients: Diffusion 17
2.1 Diffusion Equation 17
2.2 Solving Diffusion Equations 20
2.2.1 Separation of Variables 20
2.2.2 Laplace Transforms 26
2.3 The Use of Symmetry and Superposition 31
2.4 Cylindrical and Spherical Coordinates 34
2.5 Advanced Topics 38
References 43

3 Chemical Reactions 45
3.1 Reactions and Rates 45
3.2 Chemical Equilibrium 50
3.3 Ionic Reactions and Solubility Products 51
3.4 Autocatalysis, Cooperativity and Feedback 52
3.5 Oscillating Reactions 55
4 Putting It All Together: Reaction–Diffusion Equations and the Methods of Solving Them 61
4.1 General Form of Reaction–Diffusion Equations 61
4.2 RD Equations that can be Solved Analytically 62
4.3 Spatial Discretization 66
 4.3.1 Finite Difference Methods 66
 4.3.2 Finite Element Methods 70
4.4 Temporal Discretization and Integration 80
 4.4.1 Case 1: $\tau_{Rxn} \geq \tau_{Diff}$ 81
 4.4.1.1 Forward Time Centered Space (FTCS) Differencing 81
 4.4.1.2 Backward Time Centered Space (BTCS) Differencing 81
 4.4.1.3 Crank–Nicholson Method 82
 4.4.1.4 Alternating Direction Implicit Method in Two and Three Dimensions 83
 4.4.2 Case 2: $\tau_{Rxn} \ll \tau_{Diff}$ 83
 4.4.2.1 Operator Splitting Method 83
 4.4.2.2 Method of Lines 84
 4.4.3 Dealing with Precipitation Reactions 86
4.5 Heuristic Rules for Selecting a Numerical Method 87
4.6 Mesoscopic Models 87
References 90

5 Spatial Control of Reaction–Diffusion at Small Scales: Wet Stamping (WETS) 93
5.1 Choice of Gels 94
5.2 Fabrication 98
Appendix 5A: Practical Guide to Making Agarose Stamps 101
 5A.1 PDMS Molding 101
 5A.2 Agarose Molding 101
References 102

6 Fabrication by Reaction–Diffusion: Curvilinear Microstructures for Optics and Fluidics 103
6.1 Microfabrication: The Simple and the Difficult 103
6.2 Fabricating Arrays of Microlenses by RD and WETS 105
6.3 Intermezzo: Some Thoughts on Rational Design 109
6.4 Guiding Microlens Fabrication by Lattice Gas Modeling 111
CONTENTS

9.2 Amplifying Macromolecular Changes using Low-Symmetry Networks 203
9.3 Detecting Molecular Monolayers 205
9.4 Sensing Chemical ‘Food’
9.4.1 Oscillatory Kinetics 211
9.4.2 Diffusive Coupling 212
9.4.3 Wave Emission and Mode Switching 213
9.5 Extensions: New Chemistries, Applications and Measurements 215
References 222

10 Reaction–Diffusion in Three Dimensions and at the Nanoscale 227
10.1 Fabrication Inside Porous Particles 228
10.1.1 Making Spheres Inside of Cubes 228
10.1.2 Modeling of 3D RD 230
10.1.3 Fabrication Inside of Complex-Shape Particles 235
10.1.4 ‘Remote’ Exchange of the Cores 236
10.1.5 Self-Assembly of Open-Lattice Crystals 238
10.2 Diffusion in Solids: The Kirkendall Effect and Fabrication of Core–Shell Nanoparticles 240
10.3 Galvanic Replacement and De-Alloying Reactions at the Nanoscale: Synthesis of Nanocages 248
References 253

11 Epilogue: Challenges and Opportunities for the Future 257
References 263

Appendix A: Nature’s Art 265

Appendix B: Matlab Code for the Minotaur (Example 4.1) 271

Appendix C: C++ Code for the Zebra (Example 4.3) 275

Index 283