Contents

Preface XV

Part One Microscopy Fundamentals 1

1 Introduction 3
References 6

2 Scanning Probe Microscopy Basics 9
2.1 Basic Principles of Scanning Probe Microscopy 9
2.2 Scanning Tunneling Microscopy 10
2.3 Advent of Atomic Force Microscopy 10
2.4 Overview of Instrumentation 11
 2.4.1 Scanners 11
 2.4.2 Microcantilevers as Force Sensors 12
 2.4.3 Electronic Feedback 15
2.5 Probes and Cantilevers in Scanning Probe Microscopy 16
 2.5.1 Physical Attributes of Microcantilevers 18
 2.5.2 Tip Characterization 21
 2.5.3 Tip Modification 23
2.6 Modes of Operation 24
 2.6.1 Contact Mode 25
 2.6.2 Noncontact Mode and Tapping Mode 26
2.7 Advantages and Limitations 28
References 29

3 Basics of Atomic Force Microscopy Studies of Soft Matter 35
3.1 Physical Principles: Forces of Interaction 35
 3.1.1 Long-Range Forces 36
 3.1.2 Short-Range Forces 36
 3.1.3 Other Forces of Interaction 38
 3.1.4 Resolution Criteria 40
3.1.5 Scan Rates and Resonances 41
3.2 Imaging in Controlled Environment 42
 3.2.1 AFM Imaging in Liquid 42
 3.2.2 AFM at Controlled Temperature 44
 3.2.3 Imaging in Controlled Humidity 44
3.3 Artifacts in AFM Imaging of Soft Materials 46
 3.3.1 Surface Damage and Deformation 47
 3.3.2 Tip Dilation 47
 3.3.3 Damaged and Contaminated Tip or Surface 48
 3.3.4 Noises and Vibrations 50
 3.3.5 Tip Artifacts 51
 3.3.6 Thermal Drift and Piezoelement Creep 53
 3.3.7 Oscillations and Artificial Periodicities 55
 3.3.8 Image Processing Artifacts 56
3.4 Some Suggestions and Hints for Avoiding Artifacts 59
 3.4.1 Tip Testing and Deconvolution 59
 3.4.2 Force Control 61
 3.4.3 Tip Contamination and Cleaning 63
References 65

4 Advanced Imaging Modes 69
 4.1 Surface Force Spectroscopy 69
 4.1.1 Introduction to Force Spectroscopy 69
 4.1.2 Force–Distance Curves 70
 4.1.3 Force Mapping Mode 72
 4.2 Friction Force Microscopy 72
 4.3 Shear Modulation Force Microscopy 74
 4.4 Chemical Force Microscopy (CFM) 75
 4.5 Pulsed Force Microscopy 77
 4.6 Colloidal Probe Microscopy 78
 4.7 Scanning Thermal Microscopy 79
 4.7.1 Thermal Resistive Probes and Spatial Resolution 81
 4.7.2 Localized Thermal Analysis 82
 4.7.3 Thermal Conductivity 83
 4.8 Kelvin Probe and Electrostatic Force Microscopy 86
 4.9 Conductive Force Microscopy 88
 4.10 Magnetic Force Microscopy 89
 4.11 Scanning Acoustic Force Microscopy 90
 4.11.1 Force Modulation 90
 4.11.2 Ultrasonic Force Microscopy 90
 4.12 High-Speed Scanning Probe Microscopy 92
References 94
Part Two Probing Nanoscale Physical and Chemical Properties 99

5 Mechanical Properties of Polymers and Macromolecules 101
5.1 Elements of Contact Mechanics and Elastic Modulus 102
5.1.1 General SFS Nanoprobing Principles 102
5.1.2 Substrate Effects 106
5.1.3 Issues and Key Assumptions with Nanomechanical Probing 108
5.2 Probing of Elastic Moduli for Different Materials: Selected Examples 112
5.3 Adhesion Measurements 125
5.4 Viscoelasticity Measurements 131
5.5 Friction 135
5.6 Unfolding of Macromolecules 139
References 144

6 Probing of Microthermal Properties 153
6.1 Introduction 153
6.2 Measurements of Glass Transition 154
6.2.1 Ultrathin Polymer Films 154
6.2.2 Polymer Brushes 155
6.2.3 Thin Films from Polymer Blends 157
6.2.4 Depth Variation of Glass Transition in Photodegradable Polymers 159
6.3 Melting, Crystallization, and Liquid Crystalline Phase Transformations 160
6.4 Thermal Expansion of Microstructures 165
6.5 Surface Thermal Conductivity 169
References 173

7 Chemical and Electrical Properties 175
7.1 Chemical Interactions 175
7.1.1 Chemical Interactions between Molecular Assemblies 176
7.1.2 Chemical Interactions of Polymer Surfaces 179
7.2 Electrochemical Properties 182
7.3 Work Function and Surface Potential 183
7.3.1 Effect of Tip Shape on Surface Potential and Work Function Measurements 184
7.3.2 Surface Potential and Work Function of Molecular and Polymeric Surfaces 185
7.3.3 Surface Potential and Work Function of Low-Dimensional Carbon Systems 187
10.2 Liquid Crystalline Polymeric Materials 271
10.3 Periodic Polymeric Structures 275
 References 287

11 Highly Branched Macromolecules 295
11.1 Dendrimers and Dendritic Molecules 295
11.2 Brush Molecules 301
11.3 Hyperbranched Polymers 305
11.4 Star Molecules 312
11.5 Highly Branched Nanoparticles 318
 References 320

12 Multicomponent Polymer Systems and Fibers 329
12.1 Polymer Blends 330
12.2 Block Copolymers 337
12.3 Polymer Nanocomposites 346
12.4 Porous Membranes 352
12.5 Micro- and Nanofibers 356
 References 364

13 Engineered Surface and Interfacial Materials 369
13.1 Surface Brush Layers 369
 13.1.1 Homopolymer Brush Layers 371
 13.1.2 Grafted Diblock Copolymers 380
 13.1.3 Mixed Brush Layers 387
13.2 Self-Assembled Monolayers 391
 13.2.1 Growth Modes of SAMs 393
 13.2.2 Thiol SAMs 394
 13.2.3 Alkylsilane SAMs 396
 13.2.4 Nanotribological Studies 399
 13.2.5 Adsorption Control with Surface Modifications 401
13.3 Adsorbed Macromolecules on Different Substrates 404
 13.3.1 Short-Chain Linear Molecules 404
 13.3.2 Long-Chain Macromolecules 405
 13.3.3 Brush-Like Macromolecules 406
 References 409

14.1 Lbl. films 418
 14.1.1 Conventional Lbl. Films 418
 14.1.2 Composite Lbl. Films 422
 14.1.3 Porous Lbl. Films 432
14.2 Langmuir–Blodgett Films 434
 14.2.1 Molecular Order and Defects 435
14.2.2 Mixed and Composite LB Films 441
14.2.3 Mechanical and Tribological Properties 447
References 453

15 Colloids and Microcapsules 459
15.1 Colloids and Latexes 460
15.1.1 Individual and Aggregated Solid Microparticles 461
15.1.2 Composite Microparticles 463
15.2 Thin Shell Microcapsules 468
15.2.1 LbL Microcapsules 468
15.2.2 Hollow Biomolecular and Biotemplated Microcapsules 472
15.2.3 AFM Testing of Mechanical Properties of LbL Microcapsules 474
15.3 Replicas and Anisotropic Template Structures 477
15.3.1 Anisotropic Replicas 477
15.3.2 Colloidal Templated Crystals 479
15.4 Interfacial Adhesion between Particles and Surfaces 480
References 484

16 Biomaterials and Biological Structures 493
16.1 Imaging Adsorbed Biomacromolecules 493
16.1.1 General Approaches and Selected Examples 493
16.1.2 Peptides 502
16.2 Probing Specific Biomolecular Interactions 504
16.2.1 General Approaches to Nanoprobing 504
16.2.2 Examples of Biomolecular Interactions 505
16.3 Mechanics of Individual Biomacromolecules 507
16.3.1 Stretching and Pulling of Long-Chain Molecules 507
16.3.2 Unfolding of Different Biomacromolecules 511
16.4 Single-Cell Elasticity 515
16.5 Lipid Bilayers as Cell Membrane Mimics 518
References 522

Part Four Nanomanipulation, Patterning, and Sensing 527

17 Scanning Probe Microscopy on Practical Devices 529
17.1 Electrical SPM of Active Electronic and Optoelectronic Devices 529
17.2 Magnetic Force Microscopy of Storage Devices 540
17.3 NSOM of Electrooptical Devices and Nanostructures 542
17.4 Friction Force Microscopy of Storage Media and MEMS Devices 545
References 547

18 Nanolithography with Intrusive AFM Tip 551
18.1 Introduction to AFM Nanolithography 551
18.2 Mechanical Lithography 552
18.3 Local Oxidative Lithography 559
18.4 Electrostatic Nanolithography 561
18.5 Thermomechanical Nanolithography 567
References 572

19 Dip-Pen Nanolithography 577
19.1 Basics of the Ink and Pen Approach 577
19.2 Writing with a Single Pen 581
19.3 Simultaneous Writing with Multiple Pens and Large-Scale DPN 587
References 592

20 Microcantilever-Based Sensors 597
20.1 Basic Modes of Operation 597
 20.1.1 General Introduction 597
 20.1.2 Static Deflection Mode 598
 20.1.3 Dynamic Resonance Frequency Shift Mode 600
 20.1.4 Heat Sensing Behavior 601
20.2 Thermal and Vapor Sensing 603
 20.2.1 Microcantilever Thermal Sensors 603
 20.2.2 Chemical Sensors 606
20.3 Sensing in Liquid Environment 611
References 615

Index 623