Academic positioning challenge in transdisciplinary approach, 16–17

Accelerometers, in measuring childhood obesity, 85–86
ActiGraph accelerometer, 83
ActiGraph GT1M, 85
GPS, combined with, 89–91
CAPABLE study, 90
MVPA, 90
PEACH, 90
SPEEDY, 90

Access and facility provision, equity of, 51–55
area deprivation, 52
depprivation amplification, 53
free-to-use facilities, 53
greenspace areas, 54
inactivity, 51
morbidity, 51
mortality, 51
pay-to-use facilities, 52
public parks, 52

Accessibility in physical activity environments, 41–45
definition, 41
distance as barrier, 43
cost problems, 44
physical problems, 44
transportation problems, 44
‘distance decay’, 44
geographical barrier, 42–43
for informal physical activity, 46
organisational barrier, 42–43
pathways, components, 43
ability to pay, 43
cultures of participation, 43
geographical, 43
rurality issue, 44
service utilisation issue, 43
socio-economic barrier, 42–43
supportiveness, 43
utilisation behaviours, 44

Active travel, 117–129
barriers to, 119–123
car-oriented lifestyle, 120–121, 123
computer games, 119
difficulty in walking and cycling, 119

Adults
eating behaviours and food environment influencing, 150–153
5-A-Day interventions, 154
Child and Adolescent Trial for Cardiovascular Health (CATCH), 154
environmental factors, 153
experimental studies, 154–155
observational studies, 153–154
pathways, 154
sociocultural factors, 153

Adolescents
eating behaviours and food environment influencing, 153–155
5-A-Day interventions, 154
Child and Adolescent Trial for Cardiovascular Health (CATCH), 154
environmental factors, 153
experimental studies, 154–155
observational studies, 153–154
pathways, 154
sociocultural factors, 153

home entertainment, 119
lack of motivation, 119
lifestyle, 119
media report about crime, 121
urbanisation, 122
well-defined disability, 121
working mothers, 120
barriers to overcoming, 123–126
advertising campaigns, 123
charging scheme, 123
financial benefits of health resulting from physical activity, 125
Health Economic Assessment Tool (HEAT) for cycling, 125
increasing residential densities, 125
making car use less attractive, 123–124
National Health Service, 125
planning policy, 124
vehicle excise duty, 124
cycling, 117
Great Britain, 118
policies and measures to increase, 126–127
effectiveness of, 127–128
Great Britain, 126
NICE (National Institute for Health and Clinical Excellence), 128
WHO Europe, 126–127
potential for, 117
trends in, 118–119

Access and facility provision, equity of, 51–55
area deprivation, 52
depprivation amplification, 53
free-to-use facilities, 53
greenspace areas, 54
inactivity, 51
morbidity, 51
mortality, 51
pay-to-use facilities, 52
public parks, 52
Adults (Cont’d)

large-scale food interventions, 152
nutrition-related behaviours, 152
observational studies, 150–151
proximity to supermarket, 151
worksite-based studies, 152
obesity among, 2
After-school programs, US, 104
Agriculture, 172–173
European Commission (EC), Common Agricultural Policy (CAP), 170–172
objectives of CAP, 172
ANGELO (analysis grid for environments linked to obesity) framework, 165, 201, 205
ANGSt (accessible natural greenspace standards), 144
Anthropometry, 83
Areal units size problem in spatial data, 70
Autocorrelation problem in spatial data, 69
Availability in physical activity environments, 41–45
definition, 41

Barriers to active travel, 119–123
See also Active travel
Bernoulli model, 74
Bias problem in spatial data, 70
Body mass index (BMI), 1
adults, 2
Asian adults, 3
density and, 25
men, 2
‘normal’ range, 1
self-reported BMI, 32
sprawl and, 28
street connectivity and, 26
Breaking down, 24–26
See also under Buffers in spatial analysis, 72
Built environment on walking, 22

CAPABLE (Children’s Activities, Perceptions and Behaviour in the Local Environment), 82, 90
Car-oriented lifestyle, as barrier to active travel, 121
Centrism, 44
Challenges, in obesogenic environments, 215–219
objective measures, 218–219
perceptions, 217–218
Child and Adolescent Trial for Cardiovascular Health (CATCH) program, US, 103
Child care settings, US, 104–105
Children
eating behaviours and food environment influencing, 153–155
5-A-Day interventions, 154
Child and Adolescent Trial for Cardiovascular Health (CATCH), 154
environmental factors, 153
experimental studies, 154–155
observational studies, 153–154
pathways, 154
sociocultural factors, 153
health, greenspace and, 140–141
kit, fence and carpet (KFC) approach, 141
Children, obesogenic environments for, 2–3, 63–76
defining, 63–76
variables included in, 64
mapping, 63–76
advantages, 65–66
spatial analysis techniques, 65
See also under Data representation; Spatial analysis techniques
medical costs, 3
neighbourhood characteristics impacting, 64
deprivation, 64
urbanisation, 64
overweight and obesity, 3
space and place effect, 63
spatial data, problems with, 69–71
See also UK perspective of childhood obesity
Choropleth map, 66–68
Community settings (home/neighbourhood), US, 105–108
See also under United States (US)
Competition Commission (CC) inquiry, 174
Complexities, in obesogenic environments, 215–217
Complexity of obesity, 13–15
Concept mapping study, 30
Confounding concept, 69–70
Contributors to obesity, 5
Cost problems, in physical activity accessibility, 44
County-level sprawl, 27
‘Cut points’, 86
Cross-government strategies and interventions, perspectives, 216
cross-sectional, 216
geographical, 216
life-course, 216
Cross-sectional designs, 29–30
Cycling, 6, 21, 30, 45, 48, 55, 86, 91, 117–119, 121–129, 139, 140, 201–202, 216, 218
Densities, residential densities increase, to overcome active travel barriers, 125
Density in population, 23
and weight status, 24–25
housing people type impact, 25
impact in developing countries, 25
Density measures, in spatial analysis technique, 72
Deprivation amplification, 53
impacting childhood obesity, 64
Dichotomous measures of access in physical activity environments, 48
Diet, Nutrition and the Prevention of Chronic Disease, WHO report, 167
Dietary guidelines and recommendations in obesity prevention, 158
Index 223

Dietary Reference Values (DRVs), UK, 158
Distance as barrier, in physical activity
accessibility, 43
cost problems, 44
‘Distance decay’, 44
physical problems, 44
transportation problems, 44
Dot density representation, 66

Eating behaviours and food environment, 149–159
adults, 150–153
See also under Adolescents; Adults; Children
behavioural context, importance of understanding, 157
cyntectual models, adequacy and appropriateness of, 157–158
eating habits, 165–178
See also Food policy and food governance
eexisting evidence, interpreting, 155
increased adiposity, 149–150
neighbourhood environment, 155–158
objective food environments, assessment, 156
socio-economic position (SEP), 157
subjective food environments, assessment, 156
‘Ecological fallacy’, 70
Economic food environment, 166–167
Emergence of obesity, 1
eyearly 1980s, 1
‘nutritional transition’, 1
Empirical Bayes estimation, 71
Environment, food, 165–166
Environmental basis for obesity epidemic, 4–8
food intake, 6–7
physical exercise, lack of, 6
prevention, need for, 5
understanding, 5
urbanisation, 6–7
Environmental correlates of physical activity and diet, 199–211
broader context, considering, 210
inconsistencies in findings, implications, 210
causality, improving, 209–210
intervention research, 209–210
new methods in observational research, 209
diet, 202
elements of environment, integrating, 205–206
cultural environment, 206
proximal social-environmental factors, 205
moving beyond the promise, research agenda, 202–210
cross-sectional study designs, 203
fast food consumption, 203
robust answers to right questions, 203–204
physical activity, 200–202
ANGELO framework, 201, 205
physical environmental characteristics, measurement, 206–208
environmental-individual interactions, exploring, 208
objective environmental characteristics, 206–207
objectively measured characteristics and individual perceptions of the environment, relationship, 207–208
statistical methods, improving, beyond multilevel modelling, 208–209
socio-ecological theory, development and application, 204–205
underlying reasons for promising findings, 199–200
Social-Cognitive Theory, 199
Theory of Planned Behaviour, 199
‘Epoch’, 86
Equity, 51–55
of access and facility provision, 51–55
area deprivation, 52
deprivation amplification, 53
free-to-use facilities, 53
greenspace areas, 54
inactivity, 51
morbidity, 51
mortality, 51
pay-to-use facilities, 52
public parks, 52
EurepGAP organisation, 176
Exercise
motivation for, greenspace as, 139–140
setting, greenspace as, 137–139

FleXScan, 74
Food Environment, 5, 7, 82, 135, 149–157, 159
165–167, 170–171, 173, 175, 177–178, 185
193–194
Food policy and food governance, 165–178
agriculture, 172–173
EC’s CAP, 172
English policy regarding, 172–173
objectives of CAP, 172
ANGELO framework, 165
changing behaviours, 165–178
Diet, Nutrition and the Prevention of Chronic Disease, WHO report, 167
dietary guidelines and recommendations, 158
Dietary Reference Values (DRVs), UK, 158
Food Standards Agency (FSA), 158
economic environment, 166–167
food environment, 165–166
food provision and food access, 175–177
EurepGAP organisation, 176
local authorities role, 175
Red Tractor scheme, 176, 177–178
future of, 177–178
dietary behaviour, 177
individual versus the environment, 168–169
Healthy Weight, Healthy Lives strategy, 168–169
macro-food environment, 166–167
micro-level studies, 166
Food policy and food governance (Cont’d)
overarching food policy landscape, 170–171
Planning policy, 173–175
Competition Commission (CC) inquiry, 174
on land used for food production, 175
Local Development Documents (LDDs), 174
local planning authorities (LPAs), 173
planning policy guidance notes (PPGs), 174
Regional Spatial Strategies (RSS), 174
‘sequential approach’, 174
as a ‘private’ phenomenon, 167
as a public health, 171
Food safety policy, 171
Food Standards Agency (FSA), 158
Food, greenspace, obesity and, 135–137
See also under Greenspace, health and obesity
Foresight report, UK, 4, 7, 13
sub-themes, 13–14
food consumption, 13
food production, 14
individual physical activity, 13
individual psychology, 14
interrelated issues, 14
physical activity environment, 13
physiology, 13
social psychology, 14
Free-to-use facilities, 53
Geographic information systems (GISs), 45–46, 49,
65–66, 72, 83, 87–89, 184, 194, 207, 216
childhood obesity mapping, 65–66
Geographic location, 26–27
Geographical barrier of access, 42–43
Geographically weighted regression (GWR), 74
Girls, BMI in, 25
Geographical Positioning Systems (GPSs), 82–84,
87–92, 216
measurement technology, in childhood
obesity, 87–89
children’s journey location, 88
itinerary map, 88
locations in which children spent their time,
88
mobile phones, 87
sojourn map, 88
See also Accelerometers
Graduated symbol methodology, 66
Greenspace, health and obesity, 133–145
children’s health, 140–141
kit, fence and carpet (KFC) approach, 141
evidence, 133–145
physiological effects of greenspace, 134
food and, 135–137
Ebenezer Howard’s garden city model, 135
supermarkets, 135
urban allotments, 135–136
issues, 133–145
mental well-being and physical health, link
between, 134
and physical activity, 137–140
motivation for exercise, greenspace as,
139–140
quantity of greenspace, 138
setting for exercise, greenspace as,
137–139
policy context, 143–145
ANGSt (accessible natural greenspace standards), 144
Planning Policy Guidance Note 17
(PPG17), 143
provision and policy, greenspace, 141–145
Communities and Local Government
(CLG), 142
historic context, 142
institutional context, 142–143
local authority level responsibility for, 143
Health Economic Assessment Tool (HEAT) for
cycling, 125
Healthy Weight, Healthy Lives strategy,
168–169
children, 169
healthier food choices, promoting, 169
incentives for better health, creating, 169
personalised advice and support, 169
physical activity into our lives, 169
Historic context, in greenspace policy and provision, 142
Index of multiple deprivation (IMD), 83
India, 3
Individual versus the environment, food
policy, 168–169
Institutional context, in greenspace policy and provision, 142–143
Interdisciplinary research, 11–12
modes of, defining, 12–13
multidisciplinary research, 12
policy and practice, 17–18
‘Healthy Weight, Healthy Lives’
strategy, 17–18
physical activity plan, 18
radical interdisciplinarity, See Transdisciplinary approaches to tackle obesity
real-life issues, 11
International Obesity Task Force (IOTF), 1–2
International perspective on obesity/obesogenic environments, 1–8
Asia, 3
India, 3
individual susceptibility to weight gain, 4
lower income countries, 4
magnitude of the problem, 2
Mexicans, 3
persistance of obesity, 4
underestimated burden of obesity, basis for, 2–4
US non-Hispanic Whites, 3
Itinerary map, 88
Index 225

Kit, fence and carpet (KFC) approach, 141

Land use mix, in measuring walkability, 23, 26
Land use patterns, built environment on walking, 22
Language barrier, in transdisciplinary approach to tackle obesity, 16
Local authorities role
in food provision and food access, 175
for greenspace, 143
Local Development Documents (LDDs), 174
local planning authorities (LPAs), 173
Location–allocation modelling, in spatial analysis technique, 72–73
‘Location set covering problem’ algorithm, 73

Macro-food environment, 166–167
Mapping obesogenic environments in children, 63–76
data representation, 66–69
in obesogenic environments mapping, 66–69
bar chart mapping, 67
choropleth map, 66–68
confidentiality problems, 68
dot density representation, 66–67
projected symbol methodology, 66
spatial scale, 68
See also under Children, obesogenic environments for
‘Maximal covering problem’ algorithm, 73
Measuring childhood obesity, 87–89
journey location, 88
itininerary map, 88
locations in which children spent their time, 88
mobile phones, 87
sojourn map, 88
See also Accelerometers
Measuring physical environmental characteristics, 206–208
environmental–individual interactions, 208
objective, 206–208
statistical methods, 208–209
Men
BMI in, 25
obesity among, 2
Metabolic equivalent (MET)-weight moderate-to-vigorous physical activity (MW-MVPA) during school hours, US, 102
Micro-level analyses problem in spatial data, 70
Micro-level studies, eating habits, 166
Middle school-based programs, US, 103
Migration problem
in childhood obesity mapping, 71
in spatial data, 71
Mixed use planning, 21, 24
Moderate-to-vigorous physical activity (MVPA), 86, 90
US schools, 104
Motion sensors, 84–87
objective measurement in children’s physical activity, 84–87
accelerometers, 85–86
ActiGraph GT1M, 85
‘cut points’, 86
‘epoch’, 86
moderate-to-vigorous physical activity (MVPA), 86
neighbourhoods, 87
pedometers, 85
self-report and criterion methods, associations between, 85
self-report methods, 85
Multidisciplinary research, 12
Multilevel modelling techniques, 25

National Institute for Clinical Excellence (NICE), UK, guidelines, 81
‘Nature-deficit disorder’, 140
Neighbourhood characteristics, impacting childhood obesity, 64
Neighbourhood environment
defining, 155–158
for individuals, 155
Neighbourhood histories and health, 183–195
See also under New Zealand (1966–2005)
Neighbourhood walkability, 22–33
area for, factors influencing, 22–23
built environment on walking, components, 22
land use patterns, 22
transportation system, 22
urban design characteristics, 22
design–obesity relationship, 23–24
age of home, 27
area of residence, 27
in developing countries, 27
geographic location and, 26–27
housing features, 27
urban sprawl, 26–27
walkability and obesity, 23–24
weight status, 24
measurement, 32–33
conceptual and theoretical understanding issue in, 33
design and walkability, validity issues, 32
direct measures, merits of, 32
indirect measures, merits of, 32
intermediate measures, merits of, 32
issues in, 32–33
mediators role, 33
moderators role, 33
outcome validity issue, 32
micro-scale urban design features, 22
neighbourhood, definition, 31–32
neighbourhood design as moderator, 28
self-selection factors, 28
Neighbourhood walkability (Cont’d)
research in, 28–33
concept mapping exercise, 30–31
cross-sectional designs, 29–30
future of, 28–33
limitations, 30
policies and programs, 29
randomisation use, 30
Residential Environments (RESIDE) Project, 30
self-selection, 30
study design, 29–31
sidewalk availability
objective indicators of, 28
subjective indicators of, 28
street networks, 22
See also Walkability
New Zealand (1966–2005)
data and methods, 186–187
1991 New Zealand Deprivation Index (NZDep91), 186
2001 Census Area Unit (CAU), 186–187
food retailing, 186
neighbourhood histories and health, 183–195
social deprivation and food retailing in Christchurch, 183–195
bakeries, butcheries, delicatessens and fruit and vegetable shops distribution, 191
fast food outlets, restaurants and tea rooms/coffee shops distribution, 190
grocery stores and supermarkets distribution, 189
retail food outlets, 192
NICE (National Institute for Health and Clinical Excellence), 128
Non-exercise activity thermogenesis (NEAT), US, 102
‘Normal’ range in BMI, 1
‘Normal’ regression analyses methods, 74
‘Nutritional transition’, 1
Objective measures of physical activity environment, 47–49
See also under Physical activity environments
Older youth activity, US, 107
Opportunities, in obesogenic environments, 215–219
objective measures, 218–219
perceptions, 217–218
Organisational barrier of access, 42–43
‘p-median model’, 73
Pay-to-use facilities, 52–53
PEACH (Personal and Environmental Associations with Children’s Health) project, 83–84, 90
Pedometers, 85
Perceived measures of physical activity environment, 45–47
See also under Physical activity environments
Persistence of obesity, 4
Physical activities
contributing to obesity
exercise, lack of, 6
inevitable changes, 7
optional changes, 7
greenspace and, 137–140
See also under Greenspace, health and obesity in school-age children and adolescents, US, 108
Physical activity environments, 41–56
access and facility provision, equity of, 51–55
See also Equity
accessibility in, 41–56
See also individual entry
availability in, 41–56
See also individual entry
objective measures of, 47–49
access to public parks and greenspaces, 48
actual distances, computation, 47
dichotomous measures, 48
GIS, 48
perceived measures and, comparing, 49–50
SPACES audit tool, 48
perceived measures of, 45–47
physical activity and diet, measurement, 206–208
utilisation relationship with, 50–51
facility types, 50
Physical environmental characteristics, measurement, 206–208
environmental–individual interactions, exploring, 208
objective environmental characteristics, 206–207
objectively measured characteristics and individual perceptions of the environment, relationship, 207–208
statistical methods, improving, beyond multilevel modelling, 209–209
Physical problems, in physical activity accessibility, 44
Planning policy guidance notes (PPGs), 174
PPG17, 143
Planning policy, food, 173–175
Competition Commission (CC) inquiry, 174
on land used for food production, 175
Local Development Documents (LDDs), 174
local planning authorities (LPAs), 173
planning policy guidance notes (PPGs), 174
Regional Spatial Strategies (RSS), 174
‘sequential approach’, 174
Policy context for greenspace, 143–145
Population density, in measuring walkability, 23, 26
‘Private’ phenomenon, food policy as, 167
Public health policy in England, food-related, 171
Radical interdisciplinarity approach, See
Transdisciplinary approaches to tackle obesity
Recreation facilities, US, 107
Red Tractor scheme, 176, 177–178
Regional Spatial Strategies (RSS), 174
Residential densities
increase, to overcome active travel barriers, 125
in measuring walkability, 23, 26
Residential Environments (RESIDE) Project, 30
Rurality issue, in physical activity access, 44

Safety for school-age children and adolescents, US, 108
School-age children and adolescents, US, 106–108
environment and physical activity, 106–107
older youth activity, 107
perceived safety and physical activity, 108
recreation facilities, 107
‘walkability’ features, 108
School and child care, US, 100–105
See also under United States (US)
Service utilisation issue, in physical activity access, 43
Sidewalk availability
objective indicators of, 28
subjective indicators of, 28
Smart Growth Vermont definition of urban sprawl, 23
Smoothing technique problem in spatial data, 71
Social-Cognitive Theory, 199
Socio-Ecological Theory, physical activity and diet, 204–205
Socio-economic barrier of access, 42–43
Sojourn map, 88
Solutions to minimise problem in spatial data, 71
SPACES audit tool, 48
Spatial analysis techniques, 63, 71–75
childhood obesity mapping, 63, 65
considerations, in accessibility, 45
interaction models, 72
Spatial scan statistic (SaTScan), 74
SPEEDY (Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people), 82–83, 90
Sports, Play and Active Recreation for Kids (SPARK), US, 103
Sprawl, See Urban sprawl
Statistical techniques, 25
Street connectivity, in measuring walkability, 23, 26
Street networks, built environment on walking, 22
Supportiveness issue, in physical activity access, 43

Technological developments, contributing to obesity, 6
Theory of Planned Behaviour, 199
Transdisciplinary approaches to tackle obesity, 11–19
advantage of, 12
challenges of, 15–17
academic positioning, 16–17
field of sustainability, lessons from, 15–16
language as a barrier, 16
complexity of obesity, 13–15
Foresight report, 13
See also individual entry
See also Interdisciplinary research
Transport implications in active travel, 121
Transport to school, US, 100–102
Transportation problems, in physical activity accessibility, 44
Transportation system, built environment on walking, 22
Travel activity, 117–129
See also Active travel
Trial of Adolescent Activity for Girls (TAAG), US, 102, 104
Type 2 diabetes, 3

UK perspective of childhood obesity, 81–92
Children’s Plan, 81
current studies, 82–84
ActiGraph accelerometer, 83
anthropometry, 83
CAPABLE, 82
GIS-based measures, 83
index of multiple deprivation (IMD), 83
PEACH, 83–84
SPEEDY, 82–83
GPS measurement technology, 87–89
children’s journey location, 88
itinerary map, 88
locations in which children spent their time, 88
mobile phones, 87
sojourn map, 88
NICE guidelines, 81
objective measurement in physical activity, 84–91
motion sensors, 84–87, See also individual entry
UK policy and research context, 81–82
Underestimated burden of obesity, 2–4
United States (US), 3, 97–110
community settings (home/neighbourhood), 105–108
school-age children and adolescents, 106–108
young children, 105–106
future research, 109–110
cross-sectional studies, 109
individual demographic factors, 109
school and child care, 100–105
active transport to school, 100–102
Federal Highway Administration (FHWA), 101
Safe Routes to School (SR2S) projects, 100
walk-to-school initiatives, 101
within-school environments, 102–104
‘activity-permissive environments’, 102
after-school programs, 104
Child and Adolescent Trial for Cardiovascular Health (CATCH) program, 103
child care settings, 104–105
middle school-based programs, 103
moderate-to-vigorous physical activity (MVPA), 104
United States (US) (Cont’d)
MW-MVPA during school hours, 102
non-exercise activity thermogenesis (NEAT), 102
public–private partnership, 103
Sports, Play and Active Recreation for Kids (SPARK), 103
Trial of Adolescent Activity for Girls (TAAG), 102, 104
youths, physical activity and environments promoting active living in, 97–110
case examples, 98–100
physical environment changes, 97–99, 109
social environment changes, 97–98, 109
Urban design characteristics, built environment on walking, 22
Urban sprawl, 22, 26–27
Smart Growth Vermont definition, 23
weight status and, 27
county-level sprawl, 27
Urbanisation
contributing to obesity, 6–7
impacting childhood obesity 64
Utilisation relationship with physical activity environments, 30–51

Walkability, 22–33
breaking down, 24–26
county-level density, 24
density, 24–25
ecological (aggregate) level, 24
individual level, 24
multilevel modelling techniques, 25
state level density, 24
statistical techniques, 25
description, 22–23
measuring, 23
land use mix, 23
population density, 23
residential density, 23
street connectivity, 23
See also Neighbourhood walkability
’Walkability’ features for school-age children and adolescents, US, 108
Walk-to-school initiatives, US, 101
Weight gain childhoood overweight and obesity, 2–3
and density in population, 24–25
individual susceptibility to, 4
risks of, 2
walkability and, 24
WinBUGs60, 74
Women
BMI in, 25
obesity among, 2
World Health Organisation (WHO), 1–2, 5, 125, 127, 166–167, 193