Contents

Preface xiii
Preface to the First Edition xvii

Chapter 1
Introduction 1
Planning and Scheduling 2
What Is a Project? 2
Are Projects Unique? 4
Project Management Plan 7
Project Control 8
Why Schedule Projects? 8
The Scheduler 11
Certification 11
The Tripod of a Good Scheduling System 12
Scheduling and Project Management 12
Chapter 1 Exercises 13

Chapter 2
Bar (Gantt) Charts 15
Definition and Introduction 16
Advantages of Bar Charts 18
Disadvantages of Bar Charts 20
Chapter 2 Exercises 21
Chapter 3 Basic Networks 23

Definition and Introduction 24
Arrow Networks 24
 Brief Explanation 24
 The Logic 25
 Notation 25
 Dummy Activities 26
 Redundancies 31
Node Networks 31
 Lags and Leads 32
 Recommendations for Proper Node Diagram Drawing 35
Comparison of Arrow and Node Networks 37
Networks versus Bar Charts 39
 Effective Use of Bar Charts with CPM 40
Time-Scaled Logic Diagrams 40
Chapter 3 Exercises 41

Chapter 4 The Critical Path Method (CPM) 45

Introduction 46
Steps Required to Schedule a Project 47
 Main Steps 47
 Supplemental Steps 55
 Resource Allocation and Leveling 57
Beginning-of-Day or End-of-Day Convention 59
The CPM Explained through Examples 59
 Example 4.1: Logic Networks and the CPM 59
 The CPM with Computer Software Programs 63
 The Critical Path 64
 Definitions 65
 Examples 4.2 and 4.3: Node Diagrams and the CPM 66
 Free Float 67
 More Definitions 70
 Float Check 71
 Node Format 72
 Lags and Leads in CPM Networks 73
 Lags and Leads in Computer Software 76
 Further Discussion of Float 76
 Effect of Date Choices on Cash Flow 78
 Project Schedule “Health Check” 78
Chapter 5

Precedence Networks 93

Definition and Introduction 94
The Four Types of Relationships 97
Important Comments about the Four Types of Relationships 98
The Percent Complete Approach 98
Fast-Track Projects 99
A Parallel Predecessor? 101
CPM Calculations for Precedence Diagrams 102
Interruptible Activities 102
The Simplistic Approach 105
Alternative Approach 107
The Detailed Approach 110
Contiguous (Uninterruptible) Activities 113
Remedy for Interruptible Activities 117
Multistage Activities 120
Types of Lags 121
Final Discussion 123
Chapter 5 Exercises 124

Chapter 6

Resource Allocation and Resource Leveling 129

Introduction 130
The Three Categories of Resources 130
Labor 130
Equipment and Materials 130
What Is Resource Allocation? 131
Resource Leveling 131
What Is Resource Leveling? 131
Why Level Resources? 131
Do All Resources Have to Be Leveled? 132
Multiproject Resource Leveling 132
Assigning Budgets in Computer Scheduling Programs 134
Leveling Resources in a Project 136
Chapter 7 Schedule Updating and Project Control 163

Introduction 164
The Need for Schedule Updating 164
Project Control Defined 164
Schedule Updating 165
 What Is a Baseline Schedule? 165
 What Is an Updated Schedule? 167
 What Is the Data Date? 168
 What Kind of Information Is Needed for Updating Schedules? 168
Frequency of Updating 171
Retained Logic or Progress Override 172
Auto-Updating 172
Updating Schedules and Pay Requests 173
 “Degressing” an In-Progress Schedule to Create a Baseline Schedule 175
Effect of Adding or Deleting Activities on Logic 176
Steps for Updating a Schedule 180
Change in the Critical Path 191
Float after the Update 191
Contractor-Created Float 192
Data and Information 193
Project Control 194
 Measuring Work Progress 194
 Earned Value Analysis 208
Chapter 7 Exercises 217

Chapter 8 Schedule Compression and Time-Cost Trade-Off 223

Introduction 224
How Important Is It to Finish on Schedule? 225
Setting Priorities 225
Accelerating a Project 226
 What Is “Accelerating” a Project? 226
 Why Accelerate a Project? 226
 How Can Project Duration Be Shortened? 227
Acceleration and Fast-Tracking 235
Contents

Construction and Modularization 235
How Does Accelerating a Project Work? 236
Direct and Indirect Costs 238
Cost Concepts as They Relate to Schedule Compression 240
Choosing the Best Method for Project Acceleration 240
Effect of Acceleration on Direct Costs 241
Effect of Acceleration on Indirect Costs 242
Effect of Acceleration on Total Cost 243
Issues to Consider When Accelerating a Project 245
Recovery Schedules 247
Accelerating Projects Using Computers 252
Potential Issues with Uncoordinated Project
 Acceleration 253
Optimum Project Scheduling 254
Project Scheduling and Prevailing Economic Conditions 255
Project Scheduling in Extreme Weather Regions 256
Optimum Scheduling 256
Productivity and Cost Multipliers 258
Chapter 8 Exercises 260

Chapter 9
Reports and Presentations 265

Introduction 266
The Difference between Reports and Presentations 270
Skills Necessary for Giving Good Presentations 272
The Power of Presentations 273
Reviewing Reports before and after Printing 275
General Tips on Printing Reports 276
Summary Reports 277
Paper or Electronic Reports? 277
E-Reports 280
Communications in the International Environment 280
Chapter 9 Exercises 282

Chapter 10
Scheduling as Part of the Project Management Effort 285

Introduction 286
Project Objectives 287
Defining and Measuring Project Success 288
Scheduling and Estimating 290
Evolution of a Cost Estimate and a Schedule for a Project 291
Estimate-Generated Schedules 294
Cost-Loaded Schedules 296
Estimating and Accounting 296
Contents

Scheduling and Accounting 298
Scheduling and Change Orders 298
Paperless Project Management 299
Procurement Management 300
Management of Submittals 301
The Master Schedule and Subschedules 303
Multiproject Management 304
Time Contingency and Management Options 305
Chapter 10 Exercises 308

Chapter 11 Other Scheduling Methods 311

Introduction 312
Program Evaluation and Review Technique (PERT) 312
 Background 312
 Concept of PERT 312
 How PERT Works 313
 PERT Calculations 313
 Graphic Explanation 316
 “Most Likely” versus “Expected” Durations 323
 Is the Longest Path Still the Most Critical? 323
 Using PERT to Calculate the Date of an Event with a Certain
 Level of Confidence 326
 Determining the Probability of a Certain Project Finish Date
 (Multiple Paths Considered) 327
 PERT and the Construction Industry 328
 PERT and Computer Project-Scheduling Software 328
Graphical Evaluation and Review Technique (GERT) 329
Linear Scheduling Method (LSM) 330
 Steps to Build a Schedule Using the LSM 331
 How the LSM Works 331
LSM and Project Schedule Acceleration 337
 LSM Computer Software Programs 337
 Graphical Path Method (GPM) 338
 Relationship Diagramming Method (RDM) 342
 The Critical Path Segments (CPS) Scheduling Technique 346
Chapter 11 Exercises 348

Chapter 12 Dynamic Minimum Lag Relationship 353

Introduction 354
 Why DML? 354
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity between the DML Concept and the Linear Scheduling Method (LSM)</td>
<td>355</td>
</tr>
<tr>
<td>How Does DML Work?</td>
<td>356</td>
</tr>
<tr>
<td>DML Relationship in CPM Calculations</td>
<td>358</td>
</tr>
<tr>
<td>Can the Lag in the DML Relationship Be a Percentage?</td>
<td>359</td>
</tr>
<tr>
<td>Conclusion</td>
<td>365</td>
</tr>
<tr>
<td>Chapter 12 Exercises</td>
<td>366</td>
</tr>
<tr>
<td>Chapter 13 The Critical Path Definition: Revisited</td>
<td>367</td>
</tr>
<tr>
<td>Introduction</td>
<td>367</td>
</tr>
<tr>
<td>What is the “Longest Path”?</td>
<td>368</td>
</tr>
<tr>
<td>The Critical Path through Examples</td>
<td>369</td>
</tr>
<tr>
<td>The Simple Case</td>
<td>369</td>
</tr>
<tr>
<td>Imposed Finish Date</td>
<td>370</td>
</tr>
<tr>
<td>Activities with Lags</td>
<td>370</td>
</tr>
<tr>
<td>Activities with Constraints</td>
<td>371</td>
</tr>
<tr>
<td>Activities with Different Calendars</td>
<td>373</td>
</tr>
<tr>
<td>Precedence Diagrams</td>
<td>373</td>
</tr>
<tr>
<td>Further Discussion of Example 7</td>
<td>375</td>
</tr>
<tr>
<td>Resource Constraints</td>
<td>377</td>
</tr>
<tr>
<td>Resource Allocation and Resource Leveling</td>
<td>378</td>
</tr>
<tr>
<td>Risk and Probabilistic Durations</td>
<td>379</td>
</tr>
<tr>
<td>Risk, Consequences, or Both?</td>
<td>379</td>
</tr>
<tr>
<td>The AACE Recommended Practices No. 49R-06 and 92R-17</td>
<td>381</td>
</tr>
<tr>
<td>Proposed Definition of the Critical Path</td>
<td>381</td>
</tr>
<tr>
<td>Changes in the Critical Path</td>
<td>382</td>
</tr>
<tr>
<td>Chapter 14 Construction Delays and Other Claims</td>
<td>383</td>
</tr>
<tr>
<td>Introduction</td>
<td>384</td>
</tr>
<tr>
<td>Delay Claims</td>
<td>384</td>
</tr>
<tr>
<td>Reasons for Claims</td>
<td>386</td>
</tr>
<tr>
<td>Force Majeure</td>
<td>388</td>
</tr>
<tr>
<td>Types of Delays</td>
<td>389</td>
</tr>
<tr>
<td>Scheduling Mistakes Related to Delay Claims</td>
<td>390</td>
</tr>
<tr>
<td>Project Documentation</td>
<td>393</td>
</tr>
<tr>
<td>Delay Claims Resolution</td>
<td>396</td>
</tr>
<tr>
<td>The Importance of CPM Schedules in Delay Claims</td>
<td>399</td>
</tr>
<tr>
<td>Methods of Schedule Analysis</td>
<td>399</td>
</tr>
<tr>
<td>As-built Schedule</td>
<td>400</td>
</tr>
<tr>
<td>Updated Impact Schedule</td>
<td>400</td>
</tr>
</tbody>
</table>
Chapter 15 Schedule Risk Management 409

Introduction 410
Types of Risk in Construction Projects 411
Schedule Risk Types 412
General Duration Uncertainty 414
Specific Risk Events 416
Network Logic Risks 417
Definition of Risk Terms 418
Importance of Good Planning for Risk Management 420
Importance of Good CPM Scheduling Practices for Risk Assessment 420
Risk Shifting in Contracts 422
Schedule Risk Management Steps 424
1. Risk Management Planning 425
2. Identifying Schedule Risks 427
3. Performing Qualitative Analysis 427
4. Performing Risk Prioritization for the Qualitative Analysis (Quantitative Analysis) 429
5. Responding to and Addressing Risks 429
6. Monitoring and Updating the Risk Management Plan 430
Expected Value 430
Application in Scheduling 432
Examples of Risk Adjustment 433
Conclusion 434
Chapter 15 Exercises 435

Chapter 16 BIM-Based 4D Modeling and Scheduling 437

Overview of Building Information Modeling (BIM) 437
Definition and Benefits of BIM 437
Differences between BIM and CAD 438
Definition and Benefits of 3D Modeling 440
Definition and Benefits of 4D Modeling 441
Steps for Creating 4D Models 442
Definition and Benefits of 5D Modeling 443
Contents

Updating the Project 491
 Assignment 3 492
Change Order 492
 Assignment 4 493
Resource Leveling 493
 Assignment 5 493
Schedule Compression 1 494
 Assignment 6 494
Schedule Compression 2 496
 Assignment 7 496
Delay Claim 1: Unforeseen Conditions 496
 Assignment 8 497
Delay Claim 2: Change in the Owner's Requirements 497
 Assignment 9 497

Appendix B

Sample Reports 499

Tabular Reports 499
Graphic Reports 517

Abbreviations 529
Glossary 535
Bibliography 559
Index 567