Index

2100 series suitcase device 53
active DPR protection methods 68
circuit breaker remote control system (RCS) protection 141–146
current and voltage sensors 122–128
new principle 113–122
technical and economic aspects 128–140
administrative DPR protection methods
equipment replacement reserves optimizing capacity 195–196
storage problems 196–202
standardization problems 177
coordination 177–179
principles of standardization 179–188
standardization of testing 189–195
administrative DPR protection methods 68–69
Alabuga missile system 50
Alexander, K. 20
analogue input points 105–106
anthropogenic environment 1
anti-missile defence systems 30–34
Apocalypse Unknown 29, 30
Artificial Intelligence based relay protection 2
automatic telephone exchanges (ATEs) 129
B10E circuit breakers 4–6
backward-wave tubes (BWTs) 42
battery chargers 7
microprocessor-controlled 8
Belyaev, A. 19
blast wave 205, 206
Bordachev, A.M. 19
Borisov, R. 19
Brezmenov, A.E. 4
Burenok, V.M. 10–11
burst point 206

cabinets as passive protection 71–72
relay cabinets 181

capacitive interference 67–68, 100, 101
capacitor parameters 120
Carter, A. 29
central processing unit (CPU) 109
CHAMP (Counter-electronics High-powered Advanced Missile Project) programme 46–48, 153
Chernyshev, V. 40
circuit breaker remote control system (RCS) protection 141–146
proposed structure 142
circuit breakers 4–6
circuit diagram 5
circular error probable (CEP) values 30–31
Club-K missile 31
launcher 32
Coleman, K. 47
common mode impulses 88
complementary metal-oxide semiconductor (CMOS) devices 66
Compton, A. 25, 35
computer viruses 21
COMTRADE files 193, 194
conducted immunity (CI) test 164
conducted interferences (CI) 153
Conference Internationale des Grands Reseaux Electriques a Haut Tension (CIGRE) standards 58
construction materials for DPRs 109–111

© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
control cable shielding 99–104
critically important sites (CIS) 196
current sensors 122–128
current transformers (CTs) 105
cyber attacks 113
cyber warfare 20
delaying effect of EMPs 56
Denisenko, V. 72
design of DPR devices 180–182
differential mode impulses 88
digital protective relays (DPRs) 12–13
active protection from EMP
circuit breaker remote control system (RCS) protection 141–146
current and voltage sensors 122–128
new principle 113–122
technical and economic aspects 128–140
administrative and technical protection from EMP
standardization of testing 189–195
standardization problems 177–188
equipment replacement reserves 195–202
dangerous trends 16–22
counter‐measures 21–22
design 180–182
functional modules 182
future standards 183–188
need for standardization 183
passive protection from EMP
cabinets 71–72
construction materials 109–111
control cable shielding 99–104
design changes 105–109
earthing 72–80
HEMP filters 80–94
non-linear overvoltage limiters 94–98
protection from HEMP 68–69
sensitivity to electromagnetic threats 65–68
software 182–183
standardization of testing 189–190
modern testing procedures 192–193
new look at problems 190–192
testing problems 193–194
testing problems, solutions to 194–195
testing immunity to HPEM
analysis of results 170–173
critique of method 168–170
equipment 155–166
parameters 153–154
source analysis 149–153
testing immunity to IEMI
parameters 154–155
discrete input points 106–107
distance line protection relay 135
Donahue, T. 21

earth as passive protection 72–80
functional earthing 74
protective earthing 74
working earthing 74
Earth’s magnetic field 36–38, 205
electrical fast transient (EFT) pulse 91, 92, 153
generators 165–166
shape 155
emagnetic compatibility (EMC) 19–20
DPR sensitivity to electromagnetic threats 65–68
standards 56–58, 149
testing electronic apparatus 166–167
magnetic emissions (EE) 153
shape 154
magnetic impact zones of HEMP weapons 36
magnetic pulse emissions 151
magnetic threats, intentional 25
classification 35–53
defence strategy 34–35
HEMP weapons 26–27
HEMP weapons and electrical power system protection 27–30
historical background 25–26
medium- and short-range missile systems 30–34
microprocessor-based relay protection systems 53–56
technical standards 56–59
electromagnetic wave penetration by frequency 198
electromechanical protective relays (EMPRs) 12
electronics destruction device 53
end switches 79
equipment under test (EUT) 159–160
conducted immunity (CI) test 164
HEMP simulator 162–163, 164
microprocessor-based relay protection
167–168
recommendations 173–174
peak voltages for EFT generators 165
radiated immunity (RI) test 164
test bed 163, 164
test objectives 160–161
test procedure 163–164
testing for EMC 166–167
equipotential surfaces 73
Ethernet systems 54
false activation failures 118
Faraday bags 199, 200
Faraday cages 56, 74, 76, 91
FEBETRON-2020 pulse generator 44
Fedosov, A. 19
ferrite HEMP filters 80–87
frequency characteristics 82–83
impedance 83–84, 85, 86
selection principles 84–87
fibre-optic communication lines (FOCLs) 54
filters of HEMP 80
ferrite filters 80–87
LC section-based filters 87–94
flash failures 56
Fowler, M. 41
functional earthing 74
functional modules in a DPR 182
gas discharge tubes (GDTs) 88, 89
gas-filled reed switches 120, 129
geomagnetically induced current (GIC) 207
high-power electrical equipment protection 208–215
blocking equipment 210
conclusions 215
Ghosh, D.B. 18
Gindilis, L.M. 11–12
Global Mind 2
Grekhov, I.V. 50
gyrotrons 42
heave 205, 206
HEMP filters 80–94
high-altitude electromagnetic pulse (HEMP) 25–26, 35
component 3 effects 207–208
definition 35
DPR protection 68–69
E1 component 36–37, 75–77, 90
E2 component 37
E3 component 37, 39, 143
electrical power system protection 27–30
electromagnetic impact zones 36
first reliable information 26–27
magneto-hydrodynamic effect (MHD-HEMP) 205–207
standards 56–59
high-frequency choke 80
high-frequency pulses 151
high-power electrical equipment EMP protection
conclusions 215
HEMP component 3 effects 207–208
magneto-hydrodynamic effect of HEMP (MHD-HEMP) 205–207
high-power electromagnetic (HPEM) threats 28
classification 35–53
defence strategy 34–35
microprocessor-based relay protection systems 53–56
technical standards 56–59
testing DPR immunity
analysis of results 170–173
critique of method 168–170
equipment 155–166
parameters 153–154
source analysis 149–153
testing microprocessor-based relay protection 167–168
recommendaions 173–174
high-power microwave emissions 150
inductive interference 68
intentional destructive remote threats (IDRT) 113–122
circuit breaker remote control system (RCS) protection 141–146
protective device wiring diagram 115
technical and economic aspects 128–140
intentional electromagnetic interference (IEMI) 35, 40–53
electromagnetic pulse emissions 151
high-power microwave emissions 150
radio-frequency electromagnetic emissions (RFE) 151
testing DPR immunity
parameters 154–155
unidirectional narrow-band emissions 150
International Electrotechnical Commission (IEC) standards 56–58
ionosphere 37–38, 207
Iskander missile 30
launcher 31
Ivanov, S.V. 19
Jover, B. 19
klystron tubes 41–42
Kovalev, B.I. 19
Krausukha-2 radio-electronic system 48, 49
Krausukha-4 radio-electronic system 48
Kusch, C. 17
Kuznetsov, M. 19
LC section-based HEMP filters 87–94
frequency characteristics 93
lightning protection 37, 56, 65, 66, 75–76, 88, 90, 99, 102, 149–150, 153
limit switches 79
literature on EMP impact on power systems 217–221
Little John missile system 32
Lobarev, R. 40
Loborev, V.M. 27, 39, 40
Lopukhov, V. 19
LORA (Long Range Attack) missile 30–31, 34
Luna-MV missile 33–34
Lyne, W., III 20
Lyubutin, S.K. 50
LZ31 distance line protection relay 135–136
magneto-hydrodynamic effect of HEMP (MHD-HEMP) 205–207
Maloof, M. 29
Marx high-voltage pulse generator 44, 45
Matveyev, M. 19
MCT1600 device (Megger) 8–9
Mesyats, G.A. 46
metal-oxide semiconductor (MOS) devices 55
microprocessor-based relay protection
HEPM threats 53–56, 167–168
testing immunity to HPEM recommendations 173–174
testing problems 193–194
solutions to 194–195
testing systems 192–193
microprocessor-controlled battery chargers 8
microprocessors 14–15
transistor numbers over time 3
Military-Industrial Complex (MIC) 30
minimal impedance 79
missile systems, medium- and short-range 30–34
Moiseyev, N.N. 11
Montignies, R. 19
Morales, B. 17
Moskva-1 radio-electronic system 48
Moxley, R. 17
multi-point earthing 73
Nadein, V. 19
Nation Forsaken, A 29
National Security Agency (NSA) 20
Naumkin, I.E. 19
Negodayev, I.A. 4
noise, effect of signal transmission 67
non-activation failures 118
non-linear overvoltage limiters 94–98
object, pipes, rails (OPLs) 205, 207
geomagnetically induced current (GIC) 208
blocking equipment 210
on-load tap changer contractors (OLTCs) 207
Operation Crossroads 35
Operation Fishbowl 26
output relays 107–108
overhead power lines (OPL) 26
induced currents 38
paradoxical grounding method 79–80
passive DPR protection methods 68
cabinets 71–72
construction materials 109–111
control cable shielding 99–104
design changes
analogue input points 105–106
discrete input points 106–107
output relays 107–108
printed boards 108–109
earthing 72–80
HEMP filters 80–94
non-linear overvoltage limiters 94–98
Pavlovskiy, A. 40, 41
penetration depth by frequency of electromagnetic radiation 198
Pentagon 20
Pertsev, S.F. 39
Polimac, J. 18
Popkova, N.V. 1
position switches 79
potential equalizing bus 103
power vircators 42
printed boards 108–109
printed circuit boards (PCBs) 13
Prishchepenko, A. 41
Programma Electric AB 4
programmable logic controllers (PLCs) 13
Project K 26
protective container/case 201
protective earthing 74
protective relays 179
modern testing procedures 192–193
testing problems 193–194
testing problems, solutions to
194–195
Pry, P.V. 29
Pulyaev, V.I. 18
Pusenkov, E. 19
quasi-electronic stations 129
Radasky, W.A. 20, 154
radiated immunity (RI) test 164
radio-frequency electromagnetic emissions (RFE) 151
Rahim, M.A. 18, 19
Ranets-E mobile microwave system 48–49
Rayworth, D. 19
read only memory (ROM) 13
reed switch relays 122–128
additional relays 138–139
capability shortcomings 139
complex protection systems 139
cost effectiveness 134–138
cost of protection 130–133
functionality 133–134
high-frequency and pulse interference
protection 140
input blocking 138
input relay numbers 130
minimal voltage relay 127
need for 128–129
reliability 129–130
reflex triodes 42
relativistic klystron tubes 41–42
relativistic microwave generators 43
relay cabinets 181
relay protection 12–14
dangerous trends 16–22
counter-measures 21–22
remote control system (RCS) protection 141–146
proposed structure 142
remote terminal units (RTUs) 168
reports on EMP impact on power systems 217–221
reserves of replacement equipment to
improve survivability
optimizing capacity 195–196
storage problems 196–202
Rtut BM radio-electronic system 48
Rukin, S.N. 50
RXIDF-2H digital transistorized relays 13, 14
SCADA (Supervisory Control and Data Acquisition) system 54, 161
testing immunity to HPEM 167–168
critique of method 168–170
SEL-311L DPR unit testing 170–173
semiconductor films 110
Shabanov, D.V. 19
Shalin, A. 18
shielding coefficient 103
shielding of control cables 99–104
Shirokov, V. 19
shungite 110–111
silicon-on-sapphire (SOS) devices 66
simulator design for HEMP 162–163
Smart Grid 2, 8–9, 15–16, 54, 142
soft errors 55
soft failures 55
software for DPRs 182–183
solar storms 37, 38–39, 212
SOS (semiconductor open switch) effect 50
SOS-diodes 50–51
source analysis of HPEM 149–153
spectral density 150
Sowa, A.W. 19
spares, parts, tools and accessories (SPTAs) 195–196
SPTA-0 kits 196
SPTA-G kits 196
storage problems 196–202
spectral density of HPEM emissions 150
standardization of testing DPRs 189–190
modern testing procedures 192–193
new look at problems 190–192
testing problems 193–194
solutions to 194–195
standardization principles of DPRs 179–180
consumer needs 186
design 180–182
functional modules 182
future standards 183–188
manufacturer needs 186–187
need for standardization 183
software 182–183
Starfish Prime project 25–26
starting element (SE) 114–115
Strategic Defence Initiative (SDI) 44
Sukharev, M. 3–4
Super-EMP nuclear charge 39
Swain, S. 18
Sybase SQL 193, 194
technical DPR protection methods 68–69
equipment replacement reserves
optimizing capacity 195–196
storage problems 196–202
standardization problems 177
coordination 177–179
principles of standardization 179–188
standardization of testing 189–195
technical progress 1–12
definition 1
microprocessors 14–15
relay protection 12–14
relay protection dangerous trends 16–22
counter-measures 21–22
Smart Grid 2, 8–9, 15–16, 54, 142
technological singularity 3, 12
terrorist UHF generators 52–53
testing DPRs, standardization of 189–190
modern testing procedures 192–193
new look at problems 190–192
testing problems 193–194
solutions to 194–195
testing equipment for HPEM immunity 155–166
thyristor parameters 119
Tikolak protective paint 110
Timoshenkov, S.P. 50
Tiwari, A.K. 19
Tochka-U missile 30
launcher 31
transient voltage suppressor diode (TVS-diodes) 90, 96–98
transistors 13, 66, 164
amplification coefficient 95
number of chips over time 3
voltage discharge survival 54
TTL (transistor–transistor logic)
microcircuits 66
ultra-high frequency (UHF) emissions 39
vircators 43
unidirectional narrow-band emissions 150
uninterruptable power supplies (UPSs) 15
vacuum reed relays 129
parameters 118
varistors 94–95
Vinge, Vernor 2–3, 12
vircators 152
virtual cathode oscillators (vircators) 42–43
viruses, computer 21
Vladimirov, A.N. 18
voltage interference 102
voltage sensors 122–128
voltage transformers (VTs) 105–106
voltage-depending resistors (VDRs) 89
volt–ampere characteristic (VAC) 94–95, 97
Wäster, J. 19
Wik, M.W. 20
wireless communications (Wi-Fi) 17
working earthing 74
Yefremov, V.A. 19
Yemelyantsev, A. 19
Yermiskin, A. 19
Yurevich, E.I. 4
Zener diodes 96
parameters 121
zinc oxide (ZnO) varistors 94