Index

A
A32, 148
A64, 148
Abort mode, 130, 131
abstract class, 222–223
abstract syntax tree (AST), 175
abstracted away, 275
abstraction layer, 390
access time
for magnetic core memory, 52–53
memory and, 62
accumulator register, 35, 123
Acorn ARM processors, 94
Acorn Computers, 124–126
ACT (activity) LED, 16, 17
action, 179
active scanning, 324
ad hoc networks, vs. infrastructure networks, 311–312
Ada, 171, 194, 200
Adafruit (website), 470
ADD instruction, 127
address lines, 54–56
Address mark field, 241
addresses, 33–34, 40, 113, 296–297
Advanced Encryption Standard (AES), 325
Advanced Extensible Interface (AXI), 156
Advanced Microcontroller Bus
Architecture (AMBA), 155–158
Advanced Research Projects Agency Network (ARPANET), 273
Advanced RISC Machine (ARM) processor, 332
AES (Advanced Encryption Standard), 325
Agile Manifesto, 164
agile model, waterfall model vs. spiral model vs., 162–165
Airplane Stability and Control Analyzer (ASCA) project, 383
ALOHA.net, 273
alpha test, 406
Alpha Waves (video game), 389
ALT modes, 479
Altair 8800, 166
ALU (arithmetic logic unit), 101, 109, 113, 341
AM (amplitude modulation), 290, 316–319
AMBA (Advanced Microcontroller Bus Architecture), 155–158
American Standard for Code Information Interchange (ASCII), 233
Amiga, 3
amplitude modulation (AM), 290, 316–319
analog audio, digital audio vs., 429–430
analysis, semantic, 175
“analytical engine,” 27
AND, 96–97
Android, 44, 191
angle brackets (<>), 127
APIPA (Automatic Private IP Addressing), 302
Apollo, 95
Apollo lunar project, 4
Apple II, 94, 335
Apple Lisa, 95, 450
Application layer, of OSI reference model, 276
application set, 275
ARB (Architecture Review Board), 390
arbiters, 157–158
Arch Linux, 354
architecture, USB, 454–455
Architecture Review Board (ARB), 390
Arducam HIFI DAC Audio Sound Card Module, 437
arguments, 173, 211
arithmetic, 341
arithmetic logic unit (ALU), 101, 109, 113, 341
ARM (Acorn RISC Machine), 2, 3, 4, 78, 124–125
ARM Architecture Reference Manual, 128
ARM Cortex
about, 124, 145–146
AMBA (Advanced Microcontroller Bus Architecture), 155–158
Broadcom BCM2835 SoC, 150–151
Broadcom's second- and third-generation SoC devices, 151
cells, macrocells and cores, 153
floorplanning, layout and routing, 154–155
hard and soft IP, 154
IP (intellectual property), 153
multiple-issue execution, 146
Out-Of-Order execution (OOE), 146
processes, geometries and masks, 152–153
standards for on-chip communication, 155–158
system-on-a-chip (SoC), 150
VLSI (very large scale integration), 151–152
ARM Holdings, 126, 128, 353
ARM instruction set, 126–128
ARM ISA versions, 125
ARM (Advanced RISC Machine) processors, 332
about, 93
Acorn Computers, 124–126
CPU, 99–119
digital logic, 95–99
endianness, 118–119
parallelism with SIMD, 115–117
ARM11 processor
about, 35, 46, 81, 123–124, 126
ARMv6 iISA, 126–129
conditional instruction execution, 139–142
fast interrupts, 137
interrupt priority, 138–139
modes and registers, 131–136
pipeline for, 112–113
processor modes, 129–131
software interrupts, 137–138
ARMv6 ISA, 126–129
ARMv8, 64-bit computing and, 148–150
ARPANET (Advanced Research Projects Agency Network), 273
arrays, 195
Arthur operating system, 125
ASCA (Airplane Stability and Control Analyzer) project, 383
ascending stack, 104
ASCII (American Standard for Code Information Interchange), 233
assembler, 166–167
assembly, in GCC, 225
assembly language, 166–167
assignment, 193–194
assignment statements, 200
assistants, to operating system, 349–354
association, 323
association request frame, 324
associative mapping, 78–79
AST (abstract syntax tree), 175
asynchronous DRAM, vs. synchronous DRAM, 62–64
AT Attachment (ATA) interface, 244–245
Atanasoff-Berry computer, 333
attenuation, 306
Audacity, installing, 444–445
audio
about, 427
analog vs. digital, 429–430
decoding, 445–446
encoding, 445–446
I²S, 436–437
MIDI (Musical Instrument Digital Interface), 428
1-bit DAC, 434–436
Raspberry Pi sound input/output, 437–446
selecting devices, 439–441
silence, 427–428
sound and signal processing, 430–434
sound cards, 428–429
audio class, 455
audio compression, 432
audio out, 19–20
audio output jack, 437
Automatic Private IP Addressing (APIPA), 302
autotune, 432
avoidance, collision detection and, 285–286
AXI (Advanced Extensible Interface), 156

B
b column, 90
B frames, 365–366
Babbage, Charles (computer programmer), 27, 232
backoff period, 285, 313
Backus, John (computer programmer), 168
bad-block management, 266
Bain, Alexander (inventor), 232
ball-grid array (BGA), 71
bandwidth, memory and, 62
banked registers, 133
banks, SDRAM, 64–65
Barker code, 322
base 10, 39
base pointer, 103
baseband, 283
BASF, 236
BASIC (Beginner’s All-Purpose Symbolic Instruction Code), 170, 184–185, 186, 202
Basic Input/Output System (BIOS), 255–256, 350
Basic mode, Calculator and, 43
Basic Service Set (BSS), 311
basis functions, 367
BAT (block aging table), 266
batch-oriented systems, 169
Baudot, Emile (inventor), 233
Baudot-Murray code, 233
Bézier, Pierre (mathematician), 421
BFSK (binary frequency-shift keying), 317
BGA (ball-grid array), 71
bi column, 91
bi-endianness, 119
big.LITTLE, 147–148
bilinear filtering, 408
binary
 about, 37–39
 calculating arithmetic, 43–44
 hexadecimal notation as a, 41–43
 programming in, 165–166
binary frequency-shift keying (BFSK), 317
binary signalling, 290
BIOS (Basic Input/Output System), 255–256, 350
bipolar junction transistor (BJT), 53
bistable, 98
bit, 31
bit rot, 238
BJT (bipolar junction transistor), 53
block aging table (BAT), 266
block cipher, 325
blocking artefacts, 376
bo column, 91
board, for Raspberry Pi, 14–25
Boggs, David (Ethernet developer), 282–283
bombe, 2
Booleans, 194
boot partition, 250
booting Raspberry Pi, 351–353
bootloader, 247
“bootstrap” startup code, 165
bootstrapping, 349–353
Braben, David (computer scientist), 9
branch instructions, 101
branch prediction, 111
branching, 101–102
break statement, 203, 208–209
bridged hubs, 457
bridging, 310
British Broadcasting Corporation (BBC), 124
broadband, 283
Broadcom
 about, 3, 8
 BCM2835 SoC, 71, 150–151
 second- and third-generation SoC devices, 151
 SoC, 13, 465–466
BSS (Basic Service Set), 311
bubbles, 111
buff column, 90
building circuits, 474–477
"burst-mode" logic, 74
bus, 56
bus topology, vs. star topology, 292–293
Bushnell, Nolan (engineer), 387
bytecode interpreted languages, 186–189, 191

C
C++, 171, 193, 194, 197, 200, 217–218, 223
C (Carry) flag, 134
C language, 171, 177–183, 193, 194, 196–197, 200, 205, 208
C# language, 188, 200
CABAC (Context Adaptive Binary Arithmetic Coding), 375

cache
 about, 62, 72
 separate, 123–124
 set-associative, 79–81
 writing back to memory, 81

cache column, 90

cache hierarchy, 72–74

cache lines, 62, 74–76

cache mapping, 74–76

cache tag, 75

cache write policies, 81

caching, 416–417

CalculateArea function, 210–211, 212–213
CalculatePerimeter function, 212–213

Cambridge, 1–2
Cambridge Cluster, 2
Cambridge Phenomenon, 2
Cambridge Ring, 274
camera connector, 15
Camera Serial Interface (CSI), 21–22, 464
CAP (coverage accumulation pipe), 423
capitalize() function, 31
carrier sense, 314–315
Carrier Sense Multiple Access with Collision Detection (CSMA/CD), 285, 313

CAS latency, 63
case statement, 202–205
cathode-ray tube (CRT), 48, 383
CAVLC (Context Adaptive Variable Length Coding), 375
CBBS (computer bulletin-board systems), 274
CD-derived formats, of optical discs, 254
CD-R, 254
CD-ROM, 254
CD-RW, 254
cells, 54, 60, 153

central processing unit (CPU)
 about, 31, 93–94, 99–101
 ARM11 pipeline, 112–113
 branching, 101–102
 endianness, 118–119
 execution time, 105–106
 flags, 101–102
 microprocessors, 94–95
 performance of, 4
 pipeline hazards, 109–112
 pipelining, 106–112
 provided by Broadcom SOCs, 11
 single-instruction, multiple data (SIMD) instructions, 115–117
 superscalar execution, 113–115
 system clocks, 105–106
 system stack, 102–104
 transistor budgets, 95

Cerf, Vint (ARPANET creator), 273
channel congestion, 306
channels, 361
characters, 195

Charity Commission for England and Wales, 8
chemical teletype, 232
chip foundry, 126
chips, 10, 25
Chomsky, Noam (linguist), 175
chorus effect, 432
CHS (cylinder-head-sector), 242
Church, Alonzo (computer scientist), 1
circuits, 468, 474–477
CISC (complex instruction set computing), 119–124
Clark, Jim (professor), 389
classes, 214
CLE (Control List Executor), 418
delimiting, 324
client, 276
delimiting, 324
delimiters, 324
delimiters, 324
delimiters, 324
delimiters, 324
clip coordinates, 398
delimiters, 324
clip coordinates, 398
clipping, 413
clock, 105
clock cycle, 105
CMRU (not most recently used), 78
COBOL, 168–169, 170
code building blocks
about, 200
 break statement, 208–209
 case statement, 202–205
 compound statements, 200
 continue statement, 208–209
 control statements, 200
 functions, 210–211
 If/Then/Else, 200–202
 locality, 211–213
 for loops, 207–208
 repeat loops, 205
 scope, 211–213
 switch statement, 202–205
 while loops, 205–206
code density, 129
codec, 445
coding, 160
coding tree units (CTUs), 378
coefficacy, 50
collections, 218
collision detection, avoidance and, 285–286
collision domain, 286
Colossus, 2, 28, 333
columns, SDRAM, 64–65
column delimiter, 192
comments, removing, 174
Commodore, 335, 450
communications class, 455
compilers, 37
compile-time error, 161
compiling, in GCC, 225
complementary, 97
complex instruction set computing (CISC), 119–124
complexity, of Raspberry Pi, 7–8
composite devices, 454
composite video, 21
compound statements, 200
compression, 431–432. See also video codecs/
video compression
computer architecture, 340–341
Computer Architecture: A Quantitative Approach
 (Hennessy and Patterson), 4
computer bulletin-board systems (CBBS), 274
Computer Literacy Project, 124
computer programming, 160
Computer Space (video game), 387
collectors
about, 27–28
cooks as, 28–31
how they work, 31–37
numbers, 37–44
operating systems, 44–46
voltages, 37–44
concurrency, 344
condition flags, 134
conditional compiling, 174
conditional execution, 200
conditional instruction execution, 139–142
connectionless protocols, 278
connection-oriented protocols, 278
Conrod, Philip (author)
 Java for Kids, 189
Context Adaptive Binary Arithmetic Coding (CABAC), 375
Context Adaptive Variable Length Coding (CAVLC), 375
continue statement, 208–209
continuous integration, 165
control, 341, 344–345
control hazards, 110
control lines, 54
Control List Executor (CLE), 418
control statements, 200
controllers, 244–245
cooks, as computers, 28–31
coordinate shading, 417
coprocessors
 about, 142–143
 ARM interface, 143
 emulating, 145
 system control coprocessor, 143–144
 vector floating point (VFP), 144–145
cores, 46, 50, 125, 153
Cortex-A/-M/-R, 146
COSMAC 1802 series microprocessors, 94
cost, of Raspberry Pi, 7–8, 12
counting, 40
coverage accumulation pipe (CAP), 423
CPSR (current program status register), 133–135
CPU. See central processing unit (CPU)
cross-compilation, 176
cross-talk, 292
CRT (cathode-ray tube), 48, 383
cs column, 91
CSI (Camera Serial Interface), 21–22, 464
CSMA/CD (Carrier Sense Multiple Access with Collision Detection), 285, 313
CTUs (coding tree units), 378
curly brackets ({}), 127
current limiting, 469
current program status register (CPSR), 133–135
cut-through switching, 295
cylinder-head-sector (CHS), 242
cylinders, 240–242
Cypress 62167 chip, 57

data
 about, 280
 exploiting, 363–366
 ingredients as, 28–30
 programs are, 32–33
 separate caches for instructions and, 123–124
data building blocks
 about, 192
 identifiers, reserved words, symbols and operators, 192
 IEEE 754, 198–199
 static and dynamic typing, 196–197
two's complement, 198–199
types and type definitions, 194–196
 values, literals and named constants, 193
 variables, expressions and assignment, 193–194
data cache, 72
data encapsulation, 277
Data field, 241
data hazards, 110
data hiding, 217
data lines, 54–56
Data Link layer, of OSI reference model, 281–282
data remanence, 243
DC (Decode), 108
DC1/2, 113
DCF (distributed coordination function), 312–313
DDR (double rate data), 66–69
deblocking filters, 376
debugging, 162
DEC (Digital Equipment Corporation), 94, 126, 235, 274
Decode (DC), 108, 113
decoder, 55–56
decoding, 433–434, 445–446
deferred rendering, 415
defining macros, 174
defragmentation, 85
demultiplexing, 299
Dennard, Robert H. (IBM fellow), 59

D
Dabney, Ted (engineer), 387
DAC (digital-to-analogue convertor), 20
Dalvik, 191
Dennard memory cell, 59
denormal values, 142
dependencies, 228
deployment region, 252
deprecate, 128–129
depth, of memory chip/system, 57
depth test, 406
depth-cueing, 388
descending stack, 104
destination IP address, 280
destination register (Rd), 127
destructive read, 52
device classes, 455
device drivers, 45, 349
device management, as a purpose of operating systems, 342
DHCP (Dynamic Host Configuration Protocol), 300–302
dictionaries, 196
die space, 79
differential amplifier, 245
differential signalling, 245, 291
diffuse reflection, 401
DIFS (distributed inter-frame space), 313
digital audio, analog audio vs., 429–430
Digital Equipment Corporation (DEC), 94, 126, 235, 274
digital logic
about, 95
flip-flops, 97–99
logic gates, 96–97
sequential logic, 97–99
digital rights management (DRM), 131
digital signal processing (DSP), 3
digital sum, 237
Digital Video Interface (DVI), 438, 461
digital-to-analogue convertor (DAC), 20 digits, 40
DIMMs, 64–65
DIP (Dual Inline Package), 142
direct mapping, 76–78
direct memory access (DMA), 12, 143, 425
directories, 249
direct-sequence spread spectrum (DSSS), 320
dirty bit, 75
disk access, operating system and, 348–349
diskette, 246
display, Raspberry Pi, 464
display connector, 15
Display Serial Interface (DSI), 24, 464
distributed coordination function (DCF), 312–313
distributed inter-frame space (DIFS), 313
diversity reception, 306
DivX, 374
DLL (run-length limited) coding, 237
DMA (direct memory access), 12, 143, 425
doping, 152
dot (.) field, 195–196
double pumping, 66
double rate data (DDR), 66–69
Douglas, Alexander (developer), 386
DRAM (Dynamic Random Access Memory), 59–64
driver, 411
DRM (digital rights management), 131
DSI (Display Serial Interface), 24, 464
DSP (digital signal processing), 3
DSSS (direct-sequence spread spectrum), 320
D-type flip-flop, 97–98
dual in-line memory modules, 64–65
Dual Inline Package (DIP), 142
dual-core VideoCore IV processor, 151
DVD-derived formats, of optical discs, 254–255
DVI (Digital Video Interface), 438, 461
dynamic dispatch, 224
Dynamic Host Configuration Protocol (DHCP), 300–302
dynamic IP address, 301
Dynamic Random Access Memory (DRAM), 59–64
dynamic range compression, 432
dynamic typing, 196–197
dynamic wear levelling, 266
early depth rejection (early-z), 414
EBCDIC (Extended Binary Coded Decimal Interchange Code), 232, 235
ECC (Error Correction Code) field, 69–70, 241
echo effect, 432
editing digital audio, 431
EDSAC (Electronic Delay Storage Automatic Calculator), 2, 3
EEPROM (electrically erasable PROM), 258–260
effects, recording with, 432–433
EFM (eight-to-fourteen modulation), 252
EIDE (Extended Integrated Drive Electronics). See Parallel Advanced Technology Attachment (PATA)
802.11 standard, 304, 305, 311
8086 microprocessor, 94
8086 microprocessor, 95
eight-to-fourteen modulation (EFM), 252
electrically erasable PROM (EEPROM), 258–260
Electronic Delay Storage Automatic Calculator (EDSAC), 2, 3
electronic memory
about, 47
address lines, 54–56
combining memory chips into memory systems, 56–59
data lines, 54–56
DDR, DDR2, DDR3 and DDR4 SDRAM, 65–69
Dynamic Random Access Memory (DRAM), 59–64
Error-Correcting Code (ECC) memory, 69–70
history of, 47–48
magnetic core memory, 50–53
Raspberry Pi memory system, 70–81
rotating magnetic memory, 48–49
SDRAM columns, rows, banks, ranks and DIMMs, 64–65
Static Random Access Memory (SRAM), 53–54
virtual memory, 81–91
Electronic Numerical Integrator And Computer (ENIAC), 333
Eleduino DAC+, 437
Elite (video game), 389
embedded MMC (eMMC), 270–271
embedded systems, 129
eMMC, 270–271
emulating coprocessors, 145
enablers
I/O, 451–464
to operating system, 349–354
encapsulation, 217–219, 224
encoding
audio, 445–446
information for communication, 433–434
systems for, 286–289
encryption, 310
endianness, 118–119, 135
endurance, 260
Engelbart, Doug (inventor), 449
ENIAC (Electronic Numerical Integrator And Computer), 333
Enigman cipher, 2
enumerations, 196
erasable, reprogrammable read-only memory (EPROM), 257–260, 350
Error Correction Code (ECC) field, 69–70, 241
Ethernet
about, 273–274, 282–284
as an I/O enabler, 457–458
bus topology vs. star topology, 292–293
collision detection and avoidance, 285–286
encoding systems, 286–289
Internet, 296–304
10BASE-T, 291–292
OSI reference model, 274–282
PAM-5 encoding, 290–291
routers, 296–304
switched, 293–296
Thicknet, 283
Thinnet, 283
twisted-pair cabling, 291–292
Wi-Fi, 304–329
Ethernet bridges, 329
Ethernet connection, 15, 18–19
EX (Execute), 108
exceptions, 131, 135–136
executable files, linking to object code files, 183–184
Execute (EX), 108
execution time, 105–106
execution unit, 113
exFAT (extended file allocation table), 269
expressions, 172, 193–194
Extended Binary Coded Decimal Interchange Code (EBCDIC), 232, 235
extended file allocation table (exFAT), 269
Extended Integrated Drive Electronics (EIDE).
See Parallel Advanced Technology Attachment (PATA)
extended partitions, 247–248
external circuits, GPIO pins and, 16
eyes, 361–363
field, 195
field emission, 259
field-programmable gate arrays (FPGAs), 3
FIFO (first in first out), 78
file allocation table (FAT), 250–251
file management
operating system (OS) and, 45
as a purpose of operating systems, 342
file systems, 249, 348–349
files, 174, 249
film industry, 388
FIQ mode, 130, 131, 137
Firefox OS, 356
firmware, 332, 353–354
first in first out (FIFO), 78
fixed-function hardware pipeline, 391
fixed-head magnetic memory, 49
fixed-point, 199
flags, 101–102, 280
flash storage
about, 257
EEPROM, 258–260
eMMC, 270–271
EPROMs, 257–258
flash translation layer (FTL), 265–267
garbage collection, 267–268
NOR vs. NAND, 261–265
PROMs, 257–258
ROMs, 257–258
SD cards, 268–270
single-level vs. multi-level storage, 260–261
TRIM, 267–268
wear levelling, 265–267
flash translation layer (FTL), 265–267
flip-flops, 48, 53–54, 59, 97–99, 108
floating point operations, 144
floating point unit (FPU), 101
floating-point numbers, 195
floats, 195
floorplanning, 154–155
floppy disk drives, 246
flux transitions, 237–238
FM (frequency modulation), 237, 316
folders, 249
Fading, 306
Faggin, Federico (computer engineer), 94
families, 125
fast interrupts, 137
fast page mode (FPM), 63
fast-fourier transform (FFT), 425
FAT (file allocation table), 250–251
PDX (full duplex) LED, 17
FE1/2, 113
features, 335
FEC (forward error correction), 290
PFP (Front-End Pipe), 419
Petter, William (graphic designer), 383
FFT (fast-fourier transform), 425
FHSS (frequency-hopping spread spectrum), 320
for loops, 205, 207–208
FORTRAN, 168, 169, 170, 184, 194, 202
forward error correction (FEC), 290
forwarding frames between stations, 310
FOSS (free and open-source software)
products, 167
4-pole audio jack, 15
4004 microprocessor, 94
Fowler, Ralph (physicist), 259
Fowler-Nordheim tunnelling, 259
FPGAs (field-programmable gate arrays), 3
FPM (fast page mode), 63
FPU (floating point unit), 101
fragment, 404
fragment offset, 280
fragment processing, 392
fragment shading (pixel processing), 405–407
fragmentation, 87, 315–316
fragmentation threshold, 315
frames, 277, 310, 457
free and open-source software (FOSS)
products, 167
free column, 90
FreeBSD, 356
frequency modulation (FM), 237, 316
frequency representation, 367
frequency transform, 367–371
frequency-hopping spread spectrum (FHSS), 320
frequency-shift keying (FSK), 235–236
frequent integration, 165
frequent stakeholder interaction, 165
Front-End Pipe (FEP), 419
FSK (frequency-shift keying), 235–236
FTL (flash translation layer), 265–267
full duplex, 278, 292
function calls, 200
functions, 30, 104, 172–173, 210–211, 466
Furber, Steve (engineer), 3, 124

g
Galculator, 43–44
Gallardo, Raymond (author)
The Java Tutorial: A Short Course on the Basics, 5th Edition, 189
garbage collection, 188, 266, 267–268
GCC (GNU Compiler Collection), 128, 224–230
general purpose input output (GPIO)
about, 437
pins, 13, 15–16
provided by Broadcom SOCs, 11
Raspberry Pi, 464–480
general-purpose programmable computer, 1
general-purpose registers, 35
Gentoo, 356
geometrical primitives, 384
generations, processes, masks and, 152–153
geometry rejection, 413–415
geometry specification and attributes, 393–395
geometry transformation, 396–400
German Enigma cipher, 2
giant magnetoresistance (GMR), 236
GL Shader Language (GLSL), 403
global variables, 173
global wear levelling, 266
globally unique identifier, 250
GLSL (GL Shader Language), 403
GMR (giant magnetoresistance), 236
GNU, 167
GNU Compiler Collection (GCC), 128, 224–230
GNU GRUB (GRand Unified Bootloader), 351
GNU/Linux, 44
GOP (group of pictures), 366
GOP size, 366
GOP structure, 366
Gosling, James (computer scientist), 187
GPIO. See general purpose input output (GPIO)
GPIO.cleanup() command, 477
GPIO.setwarnings() command, 477
GPTs (GUID Partition Tables), 249–251
GPU
general purpose, 423–425
provided by Broadcom SOCs, 11
Raspberry Pi, 417–421
grammar, 178
GRand Unified Bootloader (GNU GRUB), 351
Graphical User Interface (GUI), 384–386, 449–451
graphics card, 387–389
graphics hardware, 411–412
GRAPhics Symbiosis System (GRASS), 388
ground, 97
group of pictures (GOP), 366
GUI (Graphical User Interface), 384–386, 449–451
GUID Partition Tables (GPTs), 249–251

H
H.264, 375
H.265, 378
HAL 9000, 428
half duplex, 278
halfwords, 33
Hamming, Richard (computer scientist), 69
Hamming code, 69–70
handshake, 314
hard IP, 154
hardware interrupts, 338
Harvard architecture, 32
Haswell-E, 95
hazards, pipeline, 109–112
HCI (hot carrier injection), 258
HDMI (High-Definition Multimedia Interface), 20, 21–22, 438, 461–462
HDMI-to-HDMI connections, 438
head, 236
header checksum, 280
heap, 173
Hejlsberg, Anders (computer programmer), 188
Helson, Ted (author), 31
Hennessy, John L. (author)
 Computer Architecture: A Quantitative Approach, 4
heterogeneous architectures, 423–425
HEVC (High Efficiency Video Codec) standard, 378
hexadecimal notation
 calculating arithmetic, 43–44
 defined, 40
 a shorthand for binary, 41–43
 hexadecimal number, 77
 hidden line removal, 388
 hidden node, 306, 314–315
 hierarchy, cache, 72–74
 HiFiBerry DAC+, 437
 High Efficiency Video Codec (HEVC) standard, 378
 High-Definition Multimedia Interface (HDMI), 20, 21–22, 438, 461–462
 high-level formatting, 243, 249
 high-level languages, 167–170
 Higinbotham, William (developer), 386
 Hollerith punch cards, 48, 49, 169, 232
 Hopper, Grace (Naval Admiral), 162, 168
 hops, 299
 hot carrier injection (HCI), 258
 hot swapping, 245
 Huffman coding, 372
 human interface class, 455
I
I frames, 363
°C
 as I/O enabler, 463–464
 provided by Broadcom SOCs, 12
°F/C
 ²C/SPI (Serial Peripheral Interface) slave, 12
°F/S, 436–437, 462–463
IANA (Internet Assigned Numbers Authority), 300
IBM, 93–94, 168, 232, 246, 335
IBSS (Independent Basic Service Set), 311
IC (integrated circuit), 53, 152, 341
id column, 91
IDE (Integrated Drive Electronics), 244.
 See also Parallel Advanced Technology Attachment (PATA)
identification, 280
identifiers, 192
IEC (International Electrotechnical Commission), 360
IEEE (Institute of Electrical and Electronics Engineers), 274, 283
IEEE 754 standard, 145, 195, 198–199
IF (Instruction Fetch), 108
If/Then construct, 141–142
If/Then/Else statement, 200–202
image class, 455
images, 354
immediate mode, 390
in column, 91
incremental models, 163
Independent Basic Service Set (IBSS), 311
index, 75
induction variable elimination, 182
infrastructure networks, vs. ad hoc networks, 311–312
inheritance, 217, 219–221, 224
inhibit wire, 50, 52
input/output (I/O)
about, 341, 447–448
camera interface, 464
display, 464
enablers, 451–464
Ethernet, 457–458
general purpose input output (GPIO), 464–480
graphical user interface (GUI), 449–451
High Definition Media Interface, 461–462
I²C, 463–464
I²S, 462–463
JTAG, 464
mouse, 448–449
Parallel Advanced Technology Attachment (PATA), 459–460
RS-232 Serial, 460–461
Serial Advanced Technology Attachment (SATA), 460
Small Computer Systems Interface (SCSI), 459
universal asynchronous receiver/transmitters (UARTs), 458–459
Universal Serial Bus (USB), 452–455
USB powered hubs, 455–457
inserting microSD cards, 23
installing Audacity, 444–445
Institute of Electrical and Electronics Engineers (IEEE), 274, 283
instruction emulation, 145
Instruction Fetch (IF), 108
instruction scheduling, 182–183
instruction set architecture (ISA), 100, 125, 126–129
instruction sets, 36–37, 100
instructions, separate caches for data and, 123–124
integer execution path, 112
integers, 194–195
integrated circuit (IC), 53, 152, 341
Integrated Drive Electronics (IDE), 244. See also Parallel Advanced Technology Attachment (PATA)
Integrated Raster Imaging System (IRIS)
hardware, 389
Integrated Services Digital Network (ISDN), 360
integration, frequent or continuous, 165
Intel, 95, 126
intellectual property (IP), 153, 154, 297
interfaces, 143, 219, 244–245
interference, 306
interlaced video, 373
interlock, 112
intermediate code generation, 176, 181
intermediate nodes, 279
International Electrotechnical Commission (IEC), 360
International Organization for Standardization (ISO), 360
International Telecommunication Union (ITU), 360
Internet, 296–304
Internet Assigned Numbers Authority (IANA), 300
Internet Protocol (IP), 275, 297
interpreters, 37
interrupt controller, provided by Broadcom SOCs, 11
interrupt priority, 138–139
fast, 137
hardware, 338
software, 137–138, 338
I/O. See input/output (I/O)
IonMonkey, 191
iOS, 44
IP (intellectual property), 153, 154, 297
IP (Internet Protocol), 275
IP addresses, 297–300, 300–302
IP header length, 279
IPFire, 356
IRIS (Integrated Raster Imaging System) hardware, 389
IRQ mode, 130, 131, 137
ISA (instruction set architecture), 100, 125, 126–129
ISDN (Integrated Services Digital Network), 360
ISO (International Organization for Standardization), 360
Issue, 113
iteration, 205
iterative, 162
ITU (International Telecommunication Union), 360

J
jam signal, 285
Java, 187–189, 191, 193, 194, 197, 200
Java Development Kit (JDK), 188
Java for Kids (Conrod and Tylee), 189
Java Virtual Machine (JVM), 188
JavaScript, 191, 197
The Java Tutorial: A Short Course on the Basics, 5th Edition (Zakhour, Kannan and Gallardo), 189
Jazelle instruction set, 126, 128–129
JDK (Java Development Kit), 188
JIT (just-in-time) compilation, 189–191
jitter, 189
Joint Video Team (JVT), 360
just-in-time (JIT) compilation, 189–191
JVM (Java Virtual Machine), 188
JVT (Joint Video Team), 360

K
Kahn, Robert (ARPANET creator), 273
Kalpana, 293
Kannan, Sowmya (author)
The Java Tutorial: A Short Course on the Basics, 5th Edition, 189
Kay, Alan (researcher), 449
Kemeny, John (researcher), 170
Kermit, 274
keyboard, 452
keywords, 192
Kilby, Jack (engineer), 53
killer packets, 289
“Knight’s Corner” Xeon Phi, 95
Kodi, 442
Kurtz, Thomas (researcher), 170

L
LAMP (Linux, Apache, mySQL, PHP) server, 19
LAN9512, 71
lanes, 148
Lang, Jack (computer scientist), 8, 9
LANs (local area networks), 274
LaserDisc format, 252
latency, 63
lattice constant, 153
layers, 338–339
layout, 154–155, 466–467
LBA (logical block addressing), 242
least recently used (LRU), 78
legacy-free PC, 453
Leibniz, Gottfried (computer scientist), 31
LES status lights, 15
level-of-detail (LOD), 409
lexer, 175, 178
lexical analysis, 175
licenses, selling, 125–126
lighting, 400–403
lines, 36, 74–76
link register (LR), 132–133
linked list, 248
linking
 in GCC, 225
 object code files to executable files, 183–184
Linux, 228–230, 257
Lisp, 170
literals, 193
LKM (loadable kernel modules), 46
LNK (link) LED, 17
load/store architecture, 122
load/store path, 112
local area networks (LANs), 274
local IP addresses, 300–302
local network, 281
local variables, 173
locality, 211–213
locality of reference, 72
LOD (level-of-detail), 409
logic, 97–99, 341
logic gates, 96–97
logical block addressing (LBA), 242
logical link control, 282
Lomas, Pete (computer scientist), 9
longitudinal recording, 238–239
loop counter, 207
looping, 200
lossless compression, 359
lossless encoding techniques, 371–372
lossy compression, 360
low-level formatting, 242–244
LPDDR2 memory chip, 70–71
LR (link register), 132–133
LRU (least recently used), 78
Lua, 191
LuaJIT, 191
luma, 361
lumi masking, 374
luminiferous aether, 283
LXTerminal, 90
Macintosh, 95, 450
macrocells, 153
macros, defining and handling, 174
magnetic core memory, 50–53
magnetic disk storage
 about, 49, 240
 beginnings of, 235–236
 controllers, 244–245
 cylinders, tracks and sectors, 240–242
 floppy disk drives, 246
 interfaces, 244–245
 low-level formatting, 242–244
magnetic domain, 237
magnetic recording/encoding schemes
 about, 236–237
 flux transitions, 237–238
 perpendicular recording, 238–239
magnetic tape, 49
magnetoresistive (MR) read heads, 236
mainframes, 333–334
maintenance, 160
make utility (Linux), 228–230
Mamtora Tim (engineer), 3
managed runtime environment (MRE), 188–189
managing
 macros, 174
 power, 469–472
Manchester encoding, 286
manipulating sound on Raspberry Pi, 439–446
mapping
 associative, 78–79
 cache, 74–76
 direct, 76–78
 virtual memory to physical memory, 83–84
maps, 196
Marill, Thomas (researcher), 273
Mark I, 32
masks, processes, geometries and, 152–153
mass storage, 231, 455
Masuoka, Fujio (engineer), 257
materials, 400–403
MCP (multi-chip packaging), 270
media access control (MAC) scheme, 281, 310
media centre software, 442
media players, 442
medium, 282
member, 195
memory. See also specific types
about, 31, 33–34
magnetic core, 50–53
provided by Broadcom SOCs, 11
rotating magnetic, 48–49
memory addressing, 54
memory chips, combining into memory systems, 56–59
memory controller, 62
memory management
operating system (OS) and, 45
as a purpose of operating systems, 341, 346–347
memory management unit (MMU), 82, 84–88, 143
memory systems, combining memory chips into, 56–59
metal-oxide semiconductor (MOS) technology, 53, 59, 94, 96–97, 122
metasyntactic identifiers, 175
Metcalfe, Robert (Ethernet developer), 282–283
micro USB power, 22–23
microarchitecture, 125
microcode, 105
microinstructions, 105
Microprocessor without Interlocked Pipeline Stages (MIPS), 119
microprocessors, 94–95
microSD card, 23–24
microwave shadows, 306
MIDI (Musical Instrument Digital Interface), 428
Midori, 91
mipmapping, 408
MIPS (Microprocessor without Interlocked Pipeline Stages), 119
MLC (multi-level cell), 260–261
MMU (memory management unit), 82, 84–88, 143
mnemonics, 166–167
Model 1401, 246
Model A, 19
Model B
audio out, 19
HDMI connector, 22
micro USB power, 23
mounting holes, 25
Raspberry Pi memory system, 70
Model B+
audio out, 20
GPIO on, 472–473
micro USB power, 23
mounting holes, 25
status LEDs on, 17
USB receptacles, 18
models, of Raspberry Pi, 14–15
modern graphics hardware, 411–412
modes
alternative, 479–480
of operating system, 345–346
processor, 129–131
registers and, 131–136
modified Harvard architecture, 111–112
modulation, 282
Wi-Fi, 320–323
monitor, 130
Moore, Gordon E. (engineer), 67
Moore’s Law, 67
MOS (metal-oxide semiconductor) technology, 53, 59, 94, 96–97, 122
MOSFET symbol, 258, 264–265
motion search, 364, 378–382
motion sensors, 452
Motorola, 94, 95, 122, 166
mounting holes, 25
mouse, 448–449, 452
MOV instruction, 30
Moving Pictures Experts Group (MPEG), 360, 374–378
MR (magnetoresistive) read heads, 236
MRE (managed runtime environment), 188–189
Mullins, Rob (computer scientist), 8, 9
multi-chip packaging (MCP), 270
multi-level cell (MLC), 260–261
multi-level page tables, 88
multi-level signalling, 290
multi-level storage, vs. single-level storage, 260–261
multimeter, 470–471
multipath interference, 306
multiple-issue execution, 146
multiplexing, 278
multiply-accumulate path, 112
multitasking, of operating system, 347–348
multithreading, 415
multi-way branch, 202
Murray, Donald (inventor), 233
Musical Instrument Digital Interface (MIDI), 428
Mycroft, Alan (computer scientist), 8, 9

N
N (Negative) flag, 134
name, 179
name() method, 223
named constants, 193
names, vs. addresses, 296–297
NaN (not-a-number) value, 142
NAND, vs. NOR, 261–265
Napier, John (inventor), 27
"Napier’s Bones,” 27
NAT (Network Address Translation), 300, 302–304
native-code compilers
about, 173–174
C language, 177–183
intermediate code generation, 176
lexical analysis, 175
linking object code files to executable files, 183–184
optimisation, 176
preprocessing, 174
semantic analysis, 175
target code generation, 176–177
NEON coprocessor, 117, 148
Network Address Translation (NAT), 300, 302–304
network booting, 351
network bridge, 294
network configurations, 457
network hub, 292
Network Interface Controller (NIC), 282
Network layer, of OSI reference model, 279–281
network management, operating system (OS) and, 45
networking, 18, 342, 458
New Out-of-Box Software (NOOBS), 251, 354–355
New Technology File System (NTFS), 249
NIC (Network Interface Controller), 282
NMRU (not most recently used), 78
node, 284
non-uniform rational basis spline (NURBS) translation, 402
non-volatile storage
about, 231
flash storage, 257–271
future of, 271
GUID Partition Tables (GPTs), 249–251
magnetic disk storage, 240–246
magnetic recording and encoding schemes, 236–239
magnetic storage, 235–236
optical discs, 252–255
partitions and file systems, 247–249
punched cards, 232–235
ramdisks, 255–257
tape data storage, 232–235
NOOBS (New Out-of-Box Software), 251, 354–355
NOR, vs. NAND, 261–265
Nordheim, Lothar (physicist), 259
normal vector, 395
NOT, 96–97
not most recently used (NMRU), 78
not-a-number (NaN) value, 142
NTFS (New Technology File System), 249
numbering, 40
numbers
about, 37
to binary, 37–39, 43–44
counting, 40
digits, 40
hexadecimal, 41–43, 43–44
numbering, 40
0, 40
NURBS (non-uniform rational basis spline)
 translation, 402
NVIDIA, 391
Nyquist rate, 436
object code files, linking to executable files, 183–184
Objective C, 171
object-oriented programming (OOP)
 about, 171, 214–217, 224
 encapsulation, 217–219
 inheritance, 217, 219–221
 polymorphism, 217, 221–224
occluded, 405
octet, 297
OE (output enable), 62
OFDM (orthogonal frequency-division multiplexing), 320
offline brute-force attack, 325
offset, 75
Ohm’s Law, 470
omxplayer utility, 441
on-chip communication, standards for, 155–158
1-bit DAC, 434–436
10BASE-T, 291–292
100 LED, 17
on-off keying (OOK), 317
OOE (Out-Of-Order execution), 146
OOK (on-off keying), 317
OOP. See object-oriented programming (OOP)
opcode (operation code), 100
open authentication, 324
Open Computing Language (OpenCL), 425
Open Media Acceleration (OpenMAX), 377–378
Open System Interconnection (OSI), 274–276
Open VG, 421–423
OpenCL (Open Computing Language), 425
OpenELEC, 355
OpenGL, 390, 391, 400
OpenGL Graphics pipeline, 391–410
OpenMAX (Open Media Acceleration), 377–378
OpenSUSE, 357
operators, 166
operating system (OS)
 about, 13, 44, 331–333
 basics of, 336–343
 building blocks of, 342–343
 enablers and assistants, 349–354
 history of, 333–336
 kernel, 343–349
 purpose of, 341–342
 for Raspberry Pi, 354–357
 third-party, 356
 what it does, 44–45
operation code (opcode), 100
operations, GPIO, 467–469
options, 280
OR, 96–97
orthogonal frequency-division multiplexing (OFDM), 320
orthogonal machine instructions, 123
OS. See operating system (OS)
OS X, 44
OSI (Open System Interconnection), 274–276
OSI reference model
 about, 274–276
 Application layer, 276
 Data Link layer, 281–282
 Network layer, 279–281
 Physical layer, 282
 Presentation layer, 276–278
 Session layer, 278
 Transport layer, 278–279
OSMC, 356
out-of-order execution, 115
Out-Of-Order execution (OOE), 146
output. See input/output (I/O)
output enable (OE), 62
output frame-buffer, 404
output merging, 392
overlays, 256
overprovisioning, 267
overrate, 436
O XO (video game), 386

P

P frames, 364–365
package-on-package, 71
packet sniffer, 325
packets, 297
pages, 82, 264
paging, 82
painter's algorithm, 406
pair programming, 165
PAM-5 encoding, 290–291
Parallel Advanced Technology Attachment (PATA), 244–245, 459–460
parallelism, with SIMD, 115–117
parser, 178–180
partition table, 247
partitioning, 242
partitions
about, 247
extended, 247–248
primary, 247–248
on Raspberry Pi SD card, 250–251
Pascal, 186–187, 193, 194, 200, 205
Pascal, Blaise (inventor), 27, 170
Pascal MicroEngine, 187
Pascaline, 27
passive scanning, 323
PATA (Parallel Advanced Technology Attachment), 244–245, 459–460
Patterson, David A. (author)
 Computer Architecture: A Quantitative Approach, 4
PC-DOS, 129
PCF (point coordination function), 310
PCM (pulse code modulation), 436, 443
PCM/FS, provided by Broadcom SOCs, 11
PDU (Protocol Data Unit), 277
peak signal to noise ratio (PSNR), 382
peers, 283
Performance Optimization with Enhanced RISC (POWER), 119
peripheral management, operating system (OS) and, 45
peripherals, 451
perpendicular recording, 238–239
personal computers, 335–336, 387–389
phase modulation, 316–319
photodiode, 252
physical Carrier Sensing, 313
Physical layer, of OSI reference model, 281–282
physical memory, mapping virtual memory to, 83–84
PIC (Programmable Intelligent Computer), 108
Pidora, 355
PiNet, 356
pins, GPIO, 466–467
pipeline, for ARM11 processor, 112–113
pipelining, 106–109
pitch shift effect, 432
pixel processing (fragment shading), 405–407
Plan 9, 357
plane, 50–51
platform, 177
playing audio, 441–444
PoE (Power over Ethernet), 329
point coordination function (PCF), 310
pointers, 103, 196
poles, 20
polygon offset, 406
polymorphism, 217, 221–224
Pong (video game), 387
port forwarding, 303–304
port numbers, 299
portability, 186
power
 managing, 469–472
 reduction features, of Raspberry Pi
 memory system, 70–71
 USB, 456
POWER (Performance Optimization with
 Enhanced RISC), 119
power connector, 15
Power over Ethernet (PoE), 329
Powerline Networking, 329
power-on states, 465
preamble, 282
prediction error, 364
prefetching, 67
preprocessing, 174, 177, 225
Presentation layer, of OSI reference model,
 276–278
primary partitions, 247–248
primitive assembly, 403–405
Primitive Setup Engine (PSE), 419
Primitive Tile Binner (PTB), 419
primitive types, 194–196
primitives, 392
printer class, 455
privileged modes, 130
probe request frame, 324
procedures, 30, 172–173
process geometry, 153
process management
 operating system (OS) and, 45
 as a purpose of operating systems, 341
 processes, geometries, masks and, 152–153
processing power, 382
processor modes, 129–131
productions, 179
profiles, 146
program counter register, 35, 100
programmable hardware pipeline, 391
Programmable Intelligent
 Computer (PIO), 108
programmable ROM (PROM) chips, 257–258
programming
 about, 159–160
 assembly language, 166–167
 beyond BASIC, 170–171
 in binary, 165–166
 bytecode interpreted languages,
 186–191
code building blocks, 200–224
data building blocks, 192–199
GNU Compiler Collection (GCC),
 224–230
GPIO, 473–480
high-level languages, 167–170
mnemonics, 166–167
native-code compilers, 173–184
pure text interpreters, 184–186
software development process,
 160–162
terminology, 171–173
waterfall vs. spiral vs. agile, 162–165
programming, extreme, 165
programs, 32–33
PROMs (programmable ROM) chips,
 257–258
protected mode, 130
Protocol Data Unit (PDU), 277
protocols, 156, 280
Proton, 124
PSE (Primitive Setup Engine), 419
pseudovariable, 179
PSNR (peak signal to noise ratio), 382
P-System, 186–187
PTB (Primitive Tile Binner), 419
pull down, 477
pull up, 477
pulse amplitude modulation, 290
pulse code modulation (PCM),
 436, 443
pulse width modulation (PWM), 12, 435
punched cards, 232–235
pure text interpreters, 183–186
PWM (pulse width modulation), 12, 435
PWR (power) LED, 16, 17
PyPy, 191
Python, 161, 191, 193, 194, 197, 200,
 201–202, 223
Q
Saturation flag, 134
QAM (quadrature amplitude modulation), 316–319
QPU Scheduler (QPS), 418
quadrature amplitude modulation (QAM), 316–319
Quake (video game), 390
quality, video, 381–382
quantisation, 368
quantisation artefacts, 359
quantisation matrix, 368
quantum tunnelling, 259

R
column, 90
Radio Shack, 335
Rails, 191
RAM (random-access memory), 48, 247
RAMAC (Random Access Memory Accounting Machine), 240
ramdisks, 255–257
Random Access Memory Accounting Machine (RAMAC), 240
random replacement, 78
random-access memory (RAM), 48, 247, 255–257
range() function, 207
ranks, SDRAM, 64–65
Raspberry Pi. See also specific topics
about, 7
board for, 14–25
booting, 351–353
chips for, 10
complexity of, 7–8
cost of, 7–8, 12
display, 464
general purpose input output (GPIO), 464–480
GPU, 417–421
limitations with, 20
models of, 8, 14–15
networking, 458
operating system for, 354–357
power of, 12–13
SD card partitions, 250–251
size of, 12
sound input/output, 437–446
swap problem, 88–89
USB power solution, 456–457
uses for, 14
websites, 425
Wi-Fi on, 326–329
Raspberry Pi 1, 151
Raspberry Pi 2
audio features of, 439
chips, 25
CPU, 151
GPIO on, 472–473
micro USB power, 23
processor in, 332
Raspberry Pi 3
ARMv8 64-bit quad-core CPU, 148
chips, 25
CPU, 151
IC for, 71
kernels, 251
processor in, 332
Raspberry Pi Foundation, 5, 8, 9
“Raspberry Pi GPIO Pin Alternative Functions,” 479
Raspberry Pi (Trading) Ltd., 9
Raspberry Pi memory system
about, 70
associative mapping, 78–79
ball-grid array packaging, 71
cache, 72
cache hierarchy, 72–74
cache lines, 74–76
cache mapping, 74–76
direct mapping, 76–78
locality of reference, 72
power reduction features, 70–71
set-associative cache, 79–81
writing cache back to memory, 81
Raspberry Pi Zero, 71
Raspbian Jessie, 474
Raspbian operating system, 43, 89, 326, 354
RaspBMC, 355
raspi-config command, 463
raster graphics, 386
rasterisation, 392, 403–405, 413
RCA, 94
Rd (destination register), 127
read address channel, 156
read data channel, 156
read-only memory (ROM), 170, 257–258, 350
recording, with effects, 432–433
records, 195–196
Redraw() method, 221–223
reduced instruction set computing (RISC), 119–124, 355
Reed-Colomon code, 253
register allocation, 176, 182–183
register files, expanded, 122
register pressure, 181
register set, 122
register slices, 157
registars
about, 34–35, 135–136
banked, 133
defined, 101
modes and, 131–136
register-transfer level (RTL), 154
remanance, 50
removing
comments, 174
microSD cards, 23
RenderMorphics, 390
repeat loops, 205
repeater hubs, 292
replay-protected memory block (RPMB), 270
reserved words, 192
residual, 364
resolution, 21, 385
RISC (reduced instruction set computing), 119–124, 355
Ritchie, Dennis (computer scientist), 171
RLL (run-length limited) coding, 237
Roberts, Lawrence (researcher), 273
robotic voice effects, 432
ROM (read-only memory), 170, 257–258, 350
root partition, 251
rotating magnetic memory, 48–49
routers, 296–304
routing, 154–155, 279
routing table, 279
rows, SDRAM, 64–65
RPMB (replay-protected memory block), 270
RS-232 Serial, as I/O enabler, 460–461
RTL (register-transfer level), 154
Ruby, 191
run-length limited (RLL) coding, 237
runtime error, 161
Russell, Steve (developer), 387
S
SainSmart HIFI DAC Audio Sound Card Module for Raspberry Pi 2, 437
Samba, 329
SATA (Serial Advanced Technology Attachment), 244–245, 460
Saturate, 113
saved program status register (SPSR), 135
Scalable Processor Architecture (SPARC), 119
scientific mode, G卡尔culator and, 43
scope, 211–213
scrambling, 288–289
scripts, 477
scrum, 165
SCSI (Small Computer Systems Interface), as I/O enabler, 459
SD (Secure Digital), 245, 268–270
SDHC cards, 268
SDR (single data rate), 66
SDRAM, columns, rows, banks, ranks and DIMMs, 64–65
SDSC cards, 268
SDXC cards, 268
SECDED (single-error connecting and double-error detecting), 69–70
second-stage boot loaders, 350–351
sectors, 240–242
Secure Digital (SD), 245, 268–270
Secure monitor mode, 130
SecureCore, 146
security
 as building block of operating system, 342
 operating system (OS) and, 45
 Wi-Fi, 325–326
segment, 277
segmentation, 278
selecting audio devices, 439–441
Selectric terminals, 169–170
self-clocking, 286
semantic analysis, 175, 180–181
semantic gap, 120
sense wire, 50
sensors, 451
sequential logic, 97–99
Serial Advanced Technology Attachment (SATA), 244–245, 460
server, 276
Service Set Identifier (SSID), 311
servo markers, 243
servo writer, 243
Session layer, of OSI reference model, 278
set-associative cache, 79–81
sets, 196
SFU (shared special functions unit), 420
shading, 415–416
Shannon, Claude (computer scientist), 31
Shannon-Hartley theorem, 318
shape, 292
shared special functions unit (SFU), 420
shared-key authentication, 324
Shift, 113
shift register, 99
short inter-frame space (SIFS), 313
shot noise, 292
Shugart, Alan (computer scientist), 244, 246
site column, 90
SIFS (short inter-frame space), 313
sign and magnitude notation, 198
signal processing, 430–434
silicon chips, 31
Silicon Fen, 2
SIMD (single instruction, multiple data) unit, 101, 115–117, 148
SIMMs (single in-line memory modules), 64
Sinclair Spectrum, 2
single data rate (SDR), 66
single in-line memory modules (SIMMs), 64
single instruction, multiple data (SIMD) unit, 101, 115–117, 148
single-ended signalling, 291
single-error connecting and double-error detecting (SECDED), 69–70
single-level cell (SLC), 260–261
single-level storage, vs. multi-level storage, 260–261
6116 chip, 57
6502 microprocessor, 94, 124
6800 microprocessor, 94
64-bit computing, ARMv8 and, 148–150
size
 of memory cards, 23
 of Raspberry Pi, 12
“Sketchpad: A Man-Machine Graphical Communication System” (Sutherland), 384
SLC (single-level cell), 260–261
SliTaz, 357
Small Computer Systems Interface (SCSI), as I/O enabler, 459
Smalltalk language, 171, 191, 223
Snappy Ubuntu Core, 356
site column, 90
SoC. See system-on-a-chip (SoC)
soft IP, 154
soft sectored, 246
software development process, 160–162
software interrupts (SWI), 137–138, 338
sound. See audio
sound cards, 428–429
sound processing, 430–434
sound quality, 20
source code, 161
SP (stack pointer), 103, 133
Spacewar! (video game), 387
SPARC (Scalable Processor Architecture), 119
Sparkfun (website), 470
spatial representation, 367
special-purpose registers, 35
specular reflection, 400–401
speculative execution, 111
SPI Interface, provided by Broadcom SOCs, 12
spiral model, waterfall model vs. agile model vs., 162–165
splitters, 158
spread-spectrum techniques, 319–320
SPSR (saved program status register), 135
Squeak, 171
SRAM (Static Random Access Memory), 53–54
SSID (Service Set Identifier), 311
SSIM (Structural Similarity) index, 382
stack, 102
stack pointer (SP), 103, 133
stack pointer register, 35
stakeholder interaction, 165
Stallman, Richard (computer scientist), 167
standards
about, 305
for MPEG, 374–378
3D graphics, 390–391
star networks, 454, 457
star topology, vs. bus topology, 292–293
state, 97
statement terminator, 192
statements, 167, 172, 200
static IP address, 301
Static Random Access Memory (SRAM), 53–54
static typing, 196–197
static wear levelling, 266
station authentication, 310
stations, forwarding frames between, 310
status LEDs, 16–17
status register, 35
stencil test, 406
storage. See specific types
storage card, 23–24
store-and-forward switching, 295
stream ciphers, 325
strings, 195, 263
stroking, 421
StrongARM microarchitecture, 123, 126
structs, 195–196
structural hazards, 110
Structural Similarity (SSIM) index, 382
subnetwork masks, 298
subprograms, 30
subroutines, 104, 172–173
subscripts, 43
Sun, 95, 187–188
superscalar execution, 113–115
SuperSpeed ports, 454
Supervisor mode, 130, 131
supplicant, 326
Sutcliffe, Alan (art director), 388
Sutherland, Ivan (student), 384–385
Swan, Tom (author), 31
“swap memory,” 49
swap space, 82–83
SWI (software interrupts), 137–138, 338
switch statement, 202–205
switched Ethernet, 293–296
switching hub, 293
swpd column, 90
sy column, 91
symbols, 40, 192
Sync field, 241
synchronous DRAM, vs. asynchronous DRAM, 62–64
syntax, 161, 175
system bus, 36
system clocks, 105–106
System Control Coprocessor, 143
system memory, 33–34
System mode, 130
system stack, 102–104
system-on-a-chip (SoC)
about, 7, 10, 93
ARM Cortex, 150
Broadcom, 465–466
components, peripherals and protocols provided by, 11–12
CPU, 99–119
defined, 125
digital logic, 95–99
endianness, 118–119
parallelism with SIMD, 115–117
on Raspberry Pi board, 15

T
T32, 148
tape data storage, 232–235
target code generation, 176–177, 182–183
TCM (tightly coupled memory), 143–144
TCP (Transmission Control Protocol), 275, 297
TCP ports, 297–300
Teletypes, 169, 232–233
Tennis for Two (video game), 386
terminate and stay resident (TSR) software, 256
terminology, programming, 171–173
ternary operators, 192
test-driven development, 164
testing, 160
Texas Instruments (TI), 53
texel, 408
text interpreters, 183–186
texture and memory fetch unit (TMU), 420
textures, 407–410, 416
Thicknet, 283
Thinnet, 283
third-party operating systems, 356
Thomas J. Watson Research Center, 119
threads, 418
3D graphics
about, 383
general purpose GPUs, 423–425
Graphical User Interface (GUI), 384
history of, 383–391
modern graphics hardware, 411–412
Open VG, 421–423
OpenGL Graphics pipeline, 391–410
standards, 390–391
in video games, 386–387
threshold voltage, 258
threshold window, 260
Thumb 2, 147
Thumb EE, 147
Thumb instruction set, 126, 129
TI (Texas Instruments), 53
tie break rules, 404
tightly coupled memory (TCM), 143–144
tile binning, 412
tile buffer (TLB), 420
tile-based deferred rendering, 412
tile-based rendering, 411
tiled rendering, 411–412
time sharing, 169
time stretching, 432
time to live (TTL), 280
timeboxing, 164, 165
timers, provided by Broadcom SOCs, 11
timestamps, 228
timing recovery, 237
Tiny Core, 357
Titan, 2
TLB (tile buffer), 420
TLB (translation lookaside buffer), 88
TMU (texture and memory fetch unit), 420
toroidal cores, 50
total packet length, 280
tracing, 190
trackballs, 449
tracks, 240–242, 431
transducer, 429
transformation, types of, 396–399
transformation matrices, 399–400
transistor, 31
transistor budgets, 95
Transistor-Transistor Logic (TTL), 53, 461
translation lookaside buffer (TLB), 88
Transmission Control Protocol (TCP), 275, 297
Transport layer, of OSI reference model, 278–279
transport set, 275
traps, 338
trees, 249
trilinear filtering, 410
TRIM, 267–268
Tron, 388
truncated binary exponential backoff, 285
TrustZone, 131, 143–144
TSR (terminate and stay resident) software, 256
TTL (time to live), 280
TTL (Transistor-Transistor Logic), 53, 461
tuples, 195–196
Turing, Alan (computer scientist), 1–2, 27
Turing machines, 1
twisted-pair cabling, 291–292
2, powers of, 58
2102 device chip, 56–57
two’s complement notation, 198–199
Tylee, Lou (author)
Java for Kids, 189
types/type definitions, 194–196

U
UART (universal asynchronous receiver/transmitter), as I/O enabler, 12, 458–459
Ubuntu MATE, 356
UDP (User Datagram Protocol), 277
UEFI (Unified Extensible Firmware interface), 350
UFS (Universal Flash Storage), 270–271
Ultra Advanced Technology Attachment (Ultra ATA). See Parallel Advanced Technology Attachment (PATA)
unary operators, 192
Undefined mode, 130, 131
underflow, 142
unidirectional, 156
Unified Extensible Firmware interface (UEFI), 350
unified shader architecture, 415
uniforms, 415
universal asynchronous receiver/transmitter (UART), 12, 458–459
Universal Flash Storage (UFS), 270–271
Universal Serial Bus (USB)
about, 452–453
as an I/O enabler, 452–455
architecture of, 454–455
history of, 453
provided by Broadcom SOCs, 11
versions of, 453–454
University of Cambridge Computer Laboratory, 8
UNIX, 390
Upton, Eben (computer scientist), 8, 9, 21
us column, 91
USB. See Universal Serial Bus (USB)
USB dongle, 19
USB hub class, 455
USB powered hubs, as I/O enablers, 455–457
USB receptacles, 15, 18
USB/Ethernet chip, 15
USB-to-Ethernet adapter, 19
user account management, operating system (OS) and, 45
User Datagram Protocol (UDP), 277
user interface, as building block of operating system, 342–343
user interface management, operating system (OS) and, 45
User mode, 130

V
V (Overflow) flag, 134
V3D (VideoCore IV GPU), 417
valid bit, 75
values, 43–44, 193
variables, 172, 193–194
varyings, 404, 415
Varyings Interpolator (VRI), 419
VAX VMS, 44
VCD (Vertex Cache Direct), 418
VCM (Vertex Cache Manager), 418
Vector Floating Point (VFP) coprocessor, 143–144, 144–145
vector graphics, 385
vector table, 135–136
vectors, 116, 144
verbose mode, 227–228
versions, 279, 453–454
Vertex Cache Direct (VCD), 418
Vertex Cache Manager (VCM), 418
vertex processing, 392
vertex shading, 403
very large scale integration (VLSI), 151–152
VES (Video Entertainment System), 387–389
VFP (Vector Floating Point) coprocessor, 143
VGA (Video Graphics Array), 438, 461
video, composite, 21
video class, 455
video codecs/video compression about, 359–360
changing times in, 373–378
frequency transform, 367–371
H.265, 378
history of, 360–362
motion search, 378–382
Video Entertainment System (VES), 387–389
video games, 3D graphics in, 386–387
Video Graphics Array (VGA), 438, 461
VideoCore, 377, 420
VideoCore IV GPU (V3D), 417
virtual addresses, 85–86
virtual machine (VM), 176
virtual memory about, 81–82
mapping to physical, 83–84
memory management unit (MMU), 84–88
multi-level page tables, 88
of operating system, 347
overview of, 82–83
Raspberry Pi swap problem, 88–89
translation lookaside buffer (TLB), 88
watching, 90–91
VLSI (very large scale integration), 151–152
VM (virtual machine), 176
vmstat utility, 90
voice recognition, 433
voltages, 37
Von Neumann, John (mathematician), 32–33, 47, 123
VRI (Varyings Interpolator), 419
W
wa column, 91
WAN (wide-area network), 273
WAP (wireless access point), 309–310
waterfall model, spiral model vs. agile model vs., 162–165
WBex, 113
WBIs, 113
WE (write enable), 62
wear levelling, 265–267
websites, 178. See also specific websites
well-known port numbers, 299
WEP (wired equivalent privacy), 325
Western Digital, 187
while loops, 205–206
Whirlwind computer, 383
wide-area network (WAN), 273
width, of memory chip/system, 57
Wi-Fi, 304–329
Wi-Fi Protected Access version 2 (WPA-2), 325
Wilkes, Maurice (engineer), 2, 3
Williams tubes, 48, 50
Wilson, Sophie (engineer), 3, 124
Windows, 44
Windows 10 IoT Core, 356
Wintel, 177, 247
wired equivalent privacy (WEP), 325
wireframe, 388
wireless access point (WAP), 309–310
wireless client adapter, 309
wireless router, 311
wireless USB dongle, 19
Wirth, Niklaus (researcher), 170, 171
INDEX

word line, 60
worlds, 131
WPA-2 (Wi-Fi Protected Access version 2), 325
write address channel, 156
write data channel, 156
write enable (WE), 62
write response channel, 156
write-back, 81
write-through, 81
writing cache back to memory, 81
WYSIWYG, 335

X
x wire, 50–51
XBMC, 442
Xerox Alto, 246
Xerox Corporation, 171, 274, 335, 449
XiX, 441–442
XModern, 274
XOR, 96–97
XScale, 126
Xvid, 374
x/y addressing, 54

Y
y wire, 50–51

Z
z (Zero) flag, 134
Z3 machine, 27–28, 31
Z80, 94
Zakhour, Sharon (author)
 The Java Tutorial: A Short Course on the Basics, 5th Edition, 189
0, 40
zero-configuration networking, 302
Zilog, 94, 166
zone bit recording, 242
Zuse, Konrad (computer programmer), 27–28, 31