CONTENTS

LIST OF CONTRIBUTORS xiii
PREFACE xv

1 From Biosyntheses to Total Syntheses: An Introduction 1
Bastien Nay and Xu-Wen Li

1.1 From Primary to Secondary Metabolism: The Key Building Blocks, 1

1.1.1 Definitions, 1
1.1.2 Energy Supply and Carbon Storing at the Early Stage of Metabolisms, 1

1.1.3 Glucose as a Starting Material Toward Key Building Blocks of the Secondary Metabolism, 1
1.1.4 Reactions Involved in the Construction of Secondary Metabolites, 3
1.1.5 Secondary Metabolisms, 4

1.2 From Biosynthesis to Total Synthesis: Strategies Toward the Natural Product Chemical Space, 10

1.2.1 The Chemical Space of Natural Products, 10
1.2.2 The Biosynthetic Pathways as an Inspiration for Synthetic Challenges, 11

1.2.3 The Science of Total Synthesis, 14
1.2.4 Conclusion: A Journey in the Future of Total Synthesis, 16

References, 16

SECTION I ACETATE BIOSYNTHETIC PATHWAY 19

2 Polyketides 21
Françoise Schaefers, Tobias A. M. Gulder, Cyril Bressy, Michael Smietana, Erica Benedetti, Stellios Arseniyadis, Markus Kalesse, and Martin Cordes

2.1 Polyketide Biosynthesis, 21

2.1.1 Introduction, 21
2.1.2 Assembly of Acetate/Malonate-Derived Metabolites, 23
2.1.3 Classification of Polyketide Biosynthetic Machineries, 23

2.1.4 Conclusion, 39

References, 40
2.2 Synthesis of Polyketides, 44
 2.2.1 Asymmetric Alkylation Reactions, 44
 2.2.2 Applications of Asymmetric Alkylation Reactions in Total Synthesis
 of Polyketides and Macrolides, 60

References, 83

2.3 Synthesis of Polyketides-Focus on Macrolides, 87
 2.3.1 Introduction, 87
 2.3.2 Stereoselective Synthesis of 1,3-Diols: Asymmetric Aldol Reactions, 88
 2.3.3 Stereoselective Synthesis of 1,3-Diols: Asymmetric Reductions, 106
 2.3.4 Application of Stereoselective Synthesis of 1,3-Diols in
 the Total Synthesis of Macrolides, 117
 2.3.5 Conclusion, 126

References, 126

3 Fatty Acids and Their Derivatives

Anders Vik and Trond Vidar Hansen

3.1 Introduction, 130

3.2 Biosynthesis, 130
 3.2.1 Fatty Acids and Lipids, 130
 3.2.2 Polyunsaturated Fatty Acids, 134
 3.2.3 Mediated Oxidations of ω-3 and ω-6 Polyunsaturated
 Fatty Acids, 135

3.3 Synthesis of ω-3 and ω-6 All-Z Polyunsaturated Fatty Acids, 140
 3.3.1 Synthesis of Polyunsaturated Fatty Acids by the Wittig
 Reaction or by the Polyyne Semihydrogenation, 140
 3.3.2 Synthesis of Polyunsaturated Fatty Acids via
 Cross Coupling Reactions, 143

3.4 Applications in Total Synthesis of Polyunsaturated Fatty Acids, 145
 3.4.1 Palladium-Catalyzed Cross Coupling Reactions, 145
 3.4.2 Biomimetic Transformations of Polyunsaturated Fatty Acids, 149
 3.4.3 Landmark Total Syntheses, 153
 3.4.4 Synthesis of Leukotriene B₅, 158

3.5 Conclusion, 160

Acknowledgments, 160

References, 160

4 Polyethers

Youwei Xie and Paul E. Floreancig

4.1 Introduction, 162

4.2 Biosynthesis, 162
 4.2.1 Ionophore Antibiotics, 162
 4.2.2 Marine Ladder Toxins, 165
 4.2.3 Annonaceous Acetogenins and Terpene Polyethers, 165

4.3 Epoxide Reactivity and Stereoselective Synthesis, 166
 4.3.1 Regiocontrol in Epoxide-Opening Reactions, 166
 4.3.2 Stereoselective Epoxide Synthesis, 172

4.4 Applications to Total Synthesis, 176
 4.4.1 Acid-Mediated Transformations, 176
 4.4.2 Cascades via Epoxonium Ion Formation, 179
 4.4.3 Cyclizations under Basic Conditions, 181
 4.4.4 Cyclization in Water, 182

4.5 Conclusions, 183

References, 184
SECTION II MEVALONATE BIOSYNTHETIC PATHWAY 187

5 From Acetate to Mevalonate and Deoxyxylulose Phosphate Biosynthetic Pathways: An Introduction to Terpenoids 189
Alexandros L. Zografos and Elissavet E. Anagnostaki

5.1 Introduction, 189
5.2 Mevalonic Acid Pathway, 191
5.3 Mevalonate-Independent Pathway, 192
5.4 Conclusion, 194
References, 194

6 Monoterpenes and Iridoids 196
Mario Waser and Uwe Rinner

6.1 Introduction, 196
6.2 Biosynthesis, 196
 6.2.1 Acyclic Monoterpenes, 197
 6.2.2 Cyclic Monoterpenes, 197
 6.2.3 Iridoids, 200
 6.2.4 Irregular Monoterpenes, 202
6.3 Asymmetric Organocatalysis, 203
 6.3.1 Introduction and Historical Background, 204
 6.3.2 Enamine, Iminium, and Singly Occupied Molecular Orbital Activation, 207
 6.3.3 Chiral (Brønsted) Acids and H-Bonding Donors, 213
 6.3.4 Chiral Brønsted/Lewis Bases and Nucleophilic Catalysis, 218
 6.3.5 Asymmetric Phase-Transfer Catalysis, 220
6.4 Organocatalysis in the Total Synthesis of Iridoids and Monoterpenoid Indole Alkaloids, 225
 6.4.1 (+)-Geniposide and 7-Deoxyloganin, 226
 6.4.2 (-)-Brasoside and (-)-Littoralisone, 227
 6.4.3 (+)-Mitsugashiwalactone, 229
 6.4.4 Alstoscholarine, 229
 6.4.5 (+)-Aspidospermidine and (+)-Vincadifformine, 230
 6.4.6 (+)-Yohimbine, 230
6.5 Conclusion, 231
References, 231

7 Sesquiterpenes 236
Alexandros L. Zografos and Elissavet E. Anagnostaki

7.1 Biosynthesis, 236
7.2 Cycloisomerization Reactions in Organic Synthesis, 244
 7.2.1 Enyne Cycloisomerization, 245
 7.2.2 Diene Cycloisomerization, 257
7.3 Application of Cycloisomerizations in the Total Synthesis of Sesquiterpenoids, 266
 7.3.1 Picrotoxane Sesquiterpenes, 266
 7.3.2 Aromadendranes Sesquiterpenes: Epiglobulol, 267
 7.3.3 Cubebol–Cubebenes Sesquiterpenes, 267
 7.3.4 Ventricos-7(13)-ene, 270
7.3.5 Englerins, 271
7.3.6 Echinopines, 271
7.3.7 Cyperolone, 273
8 Diterpenes

Louis Barriault

8.1 Introduction, 279
8.2 Biosynthesis of Diterpenes Based on Cationic Cyclizations, 1,2-Shifts, and Transannular Processes, 279
8.3 Pericyclic Reactions and their Application in the Synthesis of Selected Diterpenoids, 284
 8.3.1 Diels–Alder Reaction and Its Application in the Total Synthesis of Diterpenes, 284
 8.3.2 Cascade Pericyclic Reactions and their Application in the Total Synthesis of Diterpenes, 291
8.4 Conclusion, 293
References, 294

9 Higher Terpenes and Steroids

Kazuaki Ishihara

9.1 Introduction, 296
9.2 Biosynthesis, 296
9.3 Cascade Polyene Cyclizations, 303
 9.3.1 Diastereoselective Polyene Cyclizations, 303
 9.3.2 “Chiral proton (H⁺)”-Induced Polyene Cyclizations, 304
 9.3.3 “Chiral Metal Ion”-Induced Polyene Cyclizations, 308
 9.3.4 “Chiral Halonium Ion (X⁺)”-Induced Polyene Cyclizations, 313
 9.3.5 “Chiral Carbocation”-Induced Polyene Cyclizations, 319
 9.3.6 Stereoselective Cyclizations of Homo(polyprene)arene Analogs, 319
9.4 Biomimetic Total Synthesis of Terpenes and Steroids through Polyene Cyclization, 319
9.5 Conclusion, 328
References, 328

SECTION III SHIKIMIC ACID BIOSYNTHETIC PATHWAY

10 Lignans, Lignins, and Resveratrols

Yu Peng

10.1 Biosynthesis, 333
 10.1.1 Primary Metabolism of Shikimic Acid and Aromatic Amino Acids, 333
 10.1.2 Lignans and Lignin, 335
10.2 Auxiliary-Assisted C(sp³)–H Arylation Reactions in Organic Synthesis, 336
10.3 Friedel–Crafts Reactions in Organic Synthesis, 344
10.4 Total Synthesis of Lignans by C(sp³)–H Arylation Reactions, 353
10.5 Total Synthesis of Lignans and Polymeric Resveratrol by Friedel–Crafts Reactions, 357
10.6 Conclusion, 375
References, 375
SECTION IV MIXED BIOSYNTHETIC PATHWAYS–
THE STORY OF ALKALOIDS

11 Ornithine and Lysine Alkaloids
 Sebastian Brauch, Wouter S. Veldmate, and Floris P. J. T. Rutjes

11.1 Biosynthesis of l-Ornithine and l-Lysine Alkaloids, 383
 11.1.1 Biosynthetic Formation of Alkaloids
 Derived from l-Ornithine, 383
 11.1.2 Biosynthetic Formation of Alkaloids
 Derived from l-Lysine, 388

11.2 The Asymmetric Mannich Reaction in Organic Synthesis, 392
 11.2.1 Chiral Amines as Catalysts in Asymmetric Mannich Reactions, 394
 11.2.2 Chiral Bronsted Bases as Catalysts in Asymmetric
 Mannich Reactions, 398
 11.2.3 Chiral Bronsted Acids as Catalysts in Asymmetric
 Mannich Reactions, 404
 11.2.4 Organometallic Catalysts in Asymmetric Mannich Reactions, 408
 11.2.5 Biocatalytic Asymmetric Mannich Reactions, 413

11.3 Mannich and Related Reactions in the Total Synthesis of
 l-Lysine- and l-Ornithine-Derived Alkaloids, 414

11.4 Conclusion, 426

References, 427

12 Tyrosine Alkaloids
 Uwe Rinner and Mario Waser

12.1 Introduction, 431

12.2 Biosynthesis of Tyrosine-Derived Alkaloids, 431
 12.2.1 Phenylethylamines, 431
 12.2.2 Simple Tetrahydroisoquinoline Alkaloids, 433
 12.2.3 Modified Benzyltetrahydroisoquinoline Alkaloids, 433
 12.2.4 Phenethylisoquinoline Alkaloids, 436
 12.2.5 Amaryllidaceae Alkaloids, 438
 12.2.6 Biosynthetic Overview of Tyrosine-Derived Alkaloids, 442

12.3 Aryl–Aryl Coupling Reactions, 442
 12.3.1 Copper-Mediated Aryl–Aryl Bond Forming Reactions, 443
 12.3.2 Nickel-Mediated Aryl–Aryl Bond Forming Reactions, 446
 12.3.3 Palladium-Mediated Aryl–Aryl Bond Forming Reactions, 447
 12.3.4 Transition Metal-Catalyzed Couplings of Nonactivated
 Aryl Compounds, 450

12.4 Synthesis of Tyrosine-Derived Alkaloids, 456
 12.4.1 Synthesis of Modified Benzyltetrahydroisoquinoline Alkaloids, 456
 12.4.2 Synthesis of Phenethylisoquinoline Alkaloids, 460
 12.4.3 Synthesis of Amaryllidaceae Alkaloids, 462

12.5 Conclusion, 468

References, 469

13 Histidine and Histidine-Like Alkaloids
 Ian S. Young

13.1 Introduction, 473

13.2 Biosynthesis, 473

13.3 Atom Economy and Protecting-Group-Free Chemistry, 480
CONTENTS

13.4 Challenging the Boundaries of Synthesis: PIAs, 488
13.5 Conclusion, 497
References, 499

14 Anthranilic Acid–Tryptophan Alkaloids 502
Zhen-Yu Tang
14.1 Biosynthesis, 502
14.2 Divergent Synthesis–Collective Total Synthesis, 508
14.3 Collective Total Synthesis of Tryptophan-Derived Alkaloids, 510
 14.3.1 Monoterpene Indole Alkaloids, 510
 14.3.2 Bisindole Alkaloids, 512
References, 517

15 Future Directions of Modern Organic Synthesis 519
Jakob Pletz and Rolf Breinbauer
15.1 Introduction, 519
15.2 Enzymes in Organic Synthesis: Merging Total Synthesis with Biosynthesis, 520
15.3 Engineered Biosynthesis, 526
15.4 Diversity-Oriented Synthesis, Biology-Oriented Synthesis, and Diverted Total Synthesis, 533
 15.4.1 Diversity-oriented Synthesis, 535
 15.4.2 Biology-oriented Synthesis, 536
 15.4.3 Diverted Total Synthesis, 539
15.5 Conclusion, 541
References, 545

INDEX 548