Index

abnormal LED activity, 249
abrasion tester, 237
admit a prognostic experiment, 211
admit corrosive exposure, 237
admit degradation failures, 211–212
admitted degradation test, 211
admitted life test planning, 212–215
admitted life tests (ALT), 69
admitted stresses, 208
admitted stress test (AST), 17, 97, 105, 110, 112, 114
admitted test to failure, 112
admiting variables, 213
admit models
Arrhenius, 38, 40, 45–47
Coffin–Manson, 47
acceptable limit threshold, 211
acoustic microscopy, 219
activation energy, 40–47, 215
aging of materials, 229

Allied Telesis, 243
alternatives to MTBF, 25
analysis of degradation, 111
analysis of field failures, 225
analyze field failure returns, 252
analyzing production and field return failures, 4
applicable stresses, 208
application profiles, 213
Arrhenius equation (model), 28, 38, 40, 45–47, 210
assembly level for application, 137
associated life–stress model, 210
battery grid array (BGA), 30
PHM and detection, 186
BGA solder joint, 144
bathtub curve
infant mortality, 163–165
technological obsolescence, 7
batteries, 230
battery failures, 49
beta testing, 208
bill of materials (BOM), 39
bit error rate (BER), 196
Black’s equation, 38
Boeing 787
 burned battery, 49
Bohrbugs, 192
boundary diagram, 98–99
built in test (BIT), 211
burn-in, 45, 262, 263
business case for HALT to HASS development, 263
cannot duplicate (CND), 82, 226
causes of field failures, 225
changes to manufacturing flow, 262
changes to the designs, 227
Cisco router, 137
Cisco systems, 80
clock frequency, 234, 236
clock frequency margining, 172
clock observation, 245
CMOS semiconductors
cold step stress HALT, 257
combinations of stresses, 141–143, 164
combined temperature cycle and vibration HALT, 260
combined voltage and temperature acceleration factor, 41
communication failures, 255
comparative boundary maps, 234, 236
compare multiple potential suppliers, 228
comparison of handbook methodologies, 60
comparison to field failure rates, 137
complete failure analysis, 211
complex assemblies, 114
computational fluid dynamics, 106
condition based maintenance, 211
condition monitoring, 75, 211
contamination, 219
controlled application of heat, 247–248
controlled processes, 105
corrective action, 218
corrosion, 219, 237
cost of changes, 136–137
critical design factors, 55–56
cumulative damage, 105–106
cumulative mechanical fatigue, 143
customer expectations, 95–97
customer system and application, 208
data logging, 139
debugging, 245
de-capsulation, 219
dedicated functional test systems, 155
defining, 138–139
degradation, 110, 111
demonstrating value, 123
degradation analysis plot, 211–212
degradation mechanisms, 37, 45
degradation monitoring, 234
degradation of selected parameters, 209
design confirmation test, 207
Design for Reliability (DFR), 51, 61, 93, 104
Design for Six Sigma (DFSS), 104
design margin, 92, 96, 105, 113, 212
design margin confirmation, 113–114
design of experiments (DOE), 109
design review based on failure modes (DRBFM), 98, 100–104, 112, 209, 213
design review based on test results (DRBTR), 116–119, 220–221
design reviews, 226
design robustness, 235
design weaknesses, 235
destruct failure, 259
destruct limits
 defining, 138–139
 destruct or catastrophic failure limit, 259
detect degradation, 211
deterministic limit approaches, 228
 development, 167–168
device under test (DUT), 254
diagnostic capability, 211
diagnostic information, 247
diagnostics, 110
diagnostic sensors, 211
die change, 254
difference from HASS, 164
digital photography, 219
dissection, 119, 219
distributions data
 stress‐strength, 65
drain in the bathtub curve, 14
dwell, 246

 early wear out failures, 209
education, 125–126
electric heating elements, 237
electrical and mechanical products, 237
electrical design engineers, 129
electrical loads, 237
electrodynamic shaker, 152–153
electromigration (EM), 37, 38
electronics
 materials and manufacturing methods, 89–90
electronics failures, 235
empirical deterministic testing, 224
empirical limit boundaries, 232
empirical limits of the design, 207
empirical operational limit, 191, 197, 229, 232
empirical strength limits, 30, 224
end-use specification, 262
energy dispersive spectroscopy, 120, 219
engineering changes, 225, 262
environmental stress screening (ESS), 29, 115
 history of, 161
environmental stresses, 209
EPROM boot code, 245
exceptions to good design, 224
extrapolate life or reliability, 208, 210
Eyring model, 210
failure analysis, 116, 126, 159, 209
failure analysis and corrective action, 209
failure analysis lab, 219
failure calculation
 stress‐strength, 73
failure mechanisms, 105–106, 219, 261
failure mode characteristics, 219
failure modes, 261
failure modes and effects analysis (FMEA), 98, 100, 162, 209, 213
 of systems designs, 226
failure prediction methodologies (FPM), 4, 16, 44–47
failure reporting and corrective action system (FRACAS), 162
failures
 fans, 46
 legal liability, 88
fatigue analysis, 105–106
fatigue damage, 229
fatigue damage accumulation, 127
fault isolation techniques, 247, 250
 fear of overdesign, 132
fault tree analysis (FTA), 162
field failure results, 261
final functional tests, 264
finite element analysis, 105, 106
fixtures for HALT vibration, 153–154
FLASH memory, 254
flaw within the CPU silicon, 251
four corner test, 231
freeze spray, 247–248
frequency, 246
fretting corrosion, 127
functional block diagram, 98
functional tests, 149–151
fundamental differences in philosophy, 243
fundamental limit of technology (FLT), 12, 68–69, 82
definition, 134–135
fundamental repetition frequency, 170
good design, good discussion, good dissection (GD³), 100, 119
good dissection, 118
graphical analysis, 230–235
gravity root mean squared (Grms), 29
HALT/AST process, 213, 237
HALT chambers, two channel control, 147
HALT/HASS chamber, 267
hammer frequency and vibration levels, 178
handbook methodologies, 56
HALT stress limits, comparison to field failure rates, 137
harmonic peaks of vibration, 170
hazard functions, 20, 22
heaters, 255
Heisenbugs, 192–193
higher levels of system integration, 208
higher rated component, 264
highly accelerated corrosion test (HACT), 237
highly accelerated life test (HALT), 9, 11, 68, 97, 105, 112, 114, 239, 244
assembly level for application, 137
champion, 124
demonstrating value, 123
education, 125–126
education, fear, 130–133
education, paradigm shift, 127–128, 132
failure analysis, 159
fear of overdesign, 132
frame of reference, 5
and HASS data, 255
and HASS methods, 227, 236, 256, 262
lessons learned, 157–158
limit comparisons, 146
methodology, 92, 112, 236, 253–255, 261
misunderstanding of, 1
operational limit, 259
order of stress application, 143
outsource test lab, 130–132
philosophy and methodology, 231
procedure, 256–259
process, 166
product configurations, 155–156
RS random vibration, 143
stimulus, 242
success stories, 87–88
supplier subsystems, 138
supporting functions, 7
thermal isolation chamber, 156
thermal limit distributions, 10
thermal process, 148
upper destruct limit, thermal, 145
highly accelerated stress audit (HASA)
difference from HASS, 164
sampling rates, 171
when to apply, 170–171
highly accelerated stress screening
(HASS), 11, 12, 14, 68, 79, 115, 244, 245
development, 167–168
precipitation and detection, 169–170
process, 266–267
and re-HALT, 222
stress profile, 175
vibration level, 266
high temperature operating life
(HTOL), 39
hot carrier injection (HCI), 37–43
hot step stress HALT, 258
hot step stress test of PWB
modules, 258
IC density, 237
IGBT, 54
infant mortality, 7–11
infrared, 119
infra-red imaging, 219
interaction of multiple stresses, 208
intermittent operation, 208
internal air ducts, 142
internal memory test, 246
internal packet generator test, 246
intrinsic failure mechanism, 224
intrinsic wear out failures, 10
intrinsic wear out mechanisms,
10, 15, 29
inverse power law, 210
irrelevant failure modes, 198
key performance parameter, 211
knowledge capture, 110, 120, 221
knowledge capture and reuse, 218
Kyser, Ed, 80
large value capacitors, 229
latent defect, 9, 10, 13, 95, 225,
226, 229
stress strength diagram, 165–166
latent manufacturing flaws, 225
LCD display, 79
lean QFD, 96
lessons learned, 157–158
levels of stress used in ALT, 209
life cycle bathtub curves, 7–10, 163
life cycle environmental profile
(LCEP), 10, 28
life-stress relationship, 210
life versus stress plots, 111, 114
light emitting diodes (LEDs), 249
limit comparisons, 146
lithium-ion batteries, 49
location of the failure, 247
loose connector, 226
lower levels of product integration, 211
lower operating limit (LOL), 251
lower operating temperature limit
(LOTL), 255
lower rated component, 263
management, 128
manufacturing process excursion, 76
manufacturing processes, 228
manufacturing variations, 191
margin limit, 226
materials and manufacturing
methods, 89–90
Max Planck, 122
mean time between failures (MTBF),
16–25, 45, 58
mean time to failure, 17
measurement at intervals, 211
measurement equipment, 219
measurement while drilling, 77
mechanical bond, 229
mechanical failures, 260
mechanical products, 237
memory support fixtures, 213
memory dumps, 245
memory interface, 251
microelectronic components, life entitlement, 34
microscopy, 219
MIL-HDBK-217, 7, 16, 28, 33, 50–64
MIL-STD-1540E, 240
Minitab, 216
Mizenboushi (problem prevention process), 100
modeling performance degradation, 234
modulated vibration, 256, 264
monitoring, 255
monitoring program, 245
monitor unit performance, 213
Moore’s law, 13, 230
natural frequencies, 266
Navy Manufacturing Screening Program, 29
negative bias temperature instability (NBTI), 37–43
Niccolo Machiavelli, 122
no failure found, 226
no fault found (NFF), 82
no trouble found (NTF), 244
non-destructive methods, 119, 219
number of failures, 216
on-going reliability tests, 222
operating parameters, 213
operating vibration limit (OVL), 255
operational limits, defining, 138–139
order of application of the stresses, 143, 256
Otis Elevator Company, 179–184
cost avoidance, 183–184
outsorce test lab, 130–132
over temperature protection (OTP), 170
over-engineering, fears of, 32
overload conditions, 237
overly high stress levels, 215
oxidation, 237
Papoulis’ rule, 152
paradigm shift, 261, 262
parameter diagram, 98–99
parametric failures of ICs, 199–200
parametric responses, 186–189
parametric timing distributions, 201–203
part strength variability, 107–108
payback, 261
PCB fabrication, variations, 200
peak vibration resonant frequency shift, 142
periodic inspection, 211
physical cause of the failures, 218
physics of failure, 93, 105, 107, 112, 259
physics of failure for microelectronics, 37–43
pitfalls of accelerated life test, 215
planning an ALT, 212–214
pneumatic multi-axis RS vibration systems, 177–179
potential failure mechanism, 7
power component replacement, 264
power conversion products, 261
power conversion subsystems, 229
power cycling, 149, 246
power electronics, 54
power fluctuation, 237
power spectral density (PSD), 140
power supply, 229, 261
power up sequencing, 251
precipitation and detection screen, 168–170
prediction
history of 52–53
models, 6, 14
prediction handbooks
Chinese GJB-299, 33
CNET/RDF, 33
FIDES, 33
MIL-HDBK-217, 33
PRISM, 33
Telcordia, 33
preliminary life-stress relationship, 209
primary failure mechanisms, 105–106
printed wiring board, 256
printed wiring board assembly (PWBA), 10, 27, 195
probabilistic and statistical predictions, 224
probabilistic design, 107–108
probability density function (PDF), 66–70
probability of failure, 70–73
process DRBFM, 102–104
process flow diagram, 103
process, voltage, and temperature (PVT), 230, 233, 234
distributions, 234
procurement, 128
product configurations, 155–156
product design limits, 237
product margin improvement, 264
product weaknesses, 112
production monitoring, 234
production validation, 115
prognostic health management benefits, 185–189
prognostics, 110, 234
prognostics and health monitoring (PHM), 3
programmable logic device (PLD), 245
programmable power supplies, 213
progression of fatigue damage, 195
proof of screen (POS) (for HASS), 212, 255
propagation delay, 194–196
prototype phase, 104, 112
quality function deployment (QFD), 96
quality of the suppliers, 225–226
quantitative accelerated life test, 94–95, 113–114, 237
quantitative accelerated test, 207
radar chart, 235
rank order correlation coefficient, 61
rapid thermal transitions, 252
raw stress operational limit, 264
real causes of unreliability, 227
Reduction of Hazardous Substances (RoHS), 14, 89–90
register setting, 251
relevance of failures, 244
relevant monitoring, 252
reliability assessment, 62–63
reliability based design optimization, 108–109
reliability definition, 6
reliability engineering, advancement of, 86–89
reliability expectations, 95–96
reliability predictions, 5, 6, 11, 14–17, 28, 48–50
reliability requirements, 25
reliable second sources, 226
reliable supplier selection, 226
Reliasoft ALTA, 216
remaining useful life (RUL), 75, 87, 174
repeated exposure, 208
repetitive shock vibration, 172, 175
resonance frequency, effect, 141–142
resonate, 266
response to transients, 106–107
return on investment (ROI) analysis, 267
robust and reliable design, 26
robust design, 104–110, 227
robustness indicator diagram, 117, 220–221, 235
root cause field failure data, 43–48, 236
root cause records, 263
RS random vibration, 143

safety of screen (SoS), 173–176, 267
sampling process, 177
sampling rate, 213
scanning electron microscopy (SEM), 120, 219
screening temperatures, 266
self-diagnostics, 246
sensors, 255
serial peripheral interface (SPI), 255
PHM and detection, 186
severe user scenarios, 96
signal integrity, 195
 contributors to poor, 192–193, 199
signal propagation, 32
 temperature effects, 194–196
silent reboot, 252
Single Channel Ground Air Radio Set (SINCGARS), 58
skeptical engineers, 225–226
skewing digital signals, 208
soft failures, 249
software engineers, 129
software failures, 249
software fault, 245
software fault isolation, 243–253
software reliability, 190
solder ball cracking, 193
solder joints, 13
Space Systems/Loral, 240
spacing issues, 229
statistical process control (SPC), 65, 103
step stress accelerated test, 236
step stress limit test, 112–113
stimulation of systematic parametric variations, 201–204

strength of a subsystem, 229
stress and strength curves, 65–73
stress boundary maps, 117
stress combinations, 231
stresses, 172
stress limit boundary maps, 230
stress limits, 12, 32, 64
stress limits for reliability assessments, 229
stress margins, 225
stress monitoring, 139–140
stress profile, 175
stress response signature, 187–188
stress screening, 12, 28–30
stress-strength distributions, 107
stress-strength interference, 26–31, 64, 107–108
stress vs. strength, 240
success based compliance tests, 114
success stories, 87–88
supplier subsystems, 138
switch tuning, 249, 251
system interface issues, 222
system status and health, 211

 team leader, 128
 temperature, 247
 resonance frequency, effect, 141–142
 temperature cycling, 172
 temperature effects, 194–196
test chambers, 213
test equipment, 213
test interfaces, 208
test-run times, 216
test samples, 213
test schedule, 215
test sequence, 245, 246
test suites, 246
test technicians, 129
testing and monitoring, 245
testing to failure, 218
thermal analysis, 106
thermal cycles, 208
thermal fatigue, 237
thermal HALT
cold, 148–150
hot, 150–151
post actions, 151
thermal isolation chamber, 156
thermal isolation, 247
thermal margins, 229
thermal mass, 141
thermal overstress protection
circuits, 145–146, 263
thermal process, 148
thermal span, 263
thermal stress, 208
thermocouples, 139, 149–151
thermograph, 197
thermomechanical stress, 31
threshold, 211
time dependent dielectric
breakdown (TDDB), 37–41
time varying stress profiles, 213
timing variations, 193
top-down failure modes and effects
analysis (FMEA), 98
total strength distribution, 74
Toyota, 90
trade-off curves, 110–111
traditional reliability development, 33
transformers, 229
transients, 237
transistor threshold voltage, 230
triaxial low mass accelerometers,
140–141
two-level HASS process, 169
unit allocation, 209, 215
unit under test (UUT), 30, 31, 208, 255
unreliability, 262
unreliable design
cost of changes, 136–137
upper destruct limit, thermal, 145
upper limit, 209
upper operating limit (UOL), 255
upper operating temperature limit
(UOTL), 255
upper thermal destruct limit, 264
usage case stress levels, 256
usage rate acceleration, 208
U.S. Army, 33
useful life period, 10
variation of device parameters, 230
vibration HALT, 152–154
vibration profile, 260
vibration response measurement
location, 153
vibration spectral density
analyzers, 139
voice of the customer, 96
voltage measurement, 246
voltage rails, 247
voltage regulator outputs, 7
yield or fracture, 237
warranty costs, 225
warranty period, 15, 26
warranty return rate, 267
Watlow, 253
weaknesses in the product
design, 25
wear of bearings, 192
wear out failure mechanisms,
105, 208
wear out failures, 7, 8, 14
worst case analysis (WCA), 74
x-ray, 119, 219