Contents

Preface xxi
Acknowledgments xxiii
Acronyms xxv

Part I Design Principles of Modern Industrial Automation Systems

1 Introduction 1
1.1 Developmental Trends 2
1.2 Classifications and Existing Products 3
1.3 Functionality of Industrial Automation Systems 5
1.4 About the Book 7

2 Virtual Instrumentation 9
2.1 Introduction 9
2.2 Characteristics of VXI Instruments 13
2.3 VXI Plug&Play (VPP) Specification 14
2.4 Virtual Instrument Software Architecture (VISA) 16
2.4.1 VISA model structure 17
2.4.2 VISA characteristics 18
2.5 Programming platforms 19
2.5.1 Textual programming 20
2.5.2 Visual programming 20
2.5.3 Graphical programming 21
2.6 Liquefied Petroleum Gas Network (PLPGN) Monitoring 23
2.6.1 Overall structure design 24
2.7 Hardware and Software Design 26
2.7.1 Development requirements 26
2.7.2 Development environment 27
2.7.3 Configurations of system hardware and software 27
2.8 Summary 29

3 Component-Based Measurement Systems 31
3.1 Introduction 31
3.2 Component Technology 32
3.3 Component-Based Industrial Automation Software 35
3.4 Writing Component 36
3.5 Case Study 1 36
3.6 Case Study 2 38
3.6.1 Definition of base class of instruments 39
3.6.2 UI base class of VIs 40
3.7 Summary 41

4 Object-Oriented Software Engineering 43
4.1 Software Development Models 44
4.2 Object Orientation 48
4.2.1 OOA/OOD 48
4.2.2 Advantages 51

5 Graphical User Interface Design 53

6 Database Management 59
6.1 Database Systems 60
6.2 Relational Database 61
6.3 Structured Query Language (SQL) 64
6.4 Open Database Connectivity (ODBC) 66

7 Software Testing 69
7.1 Software and Industrial Automation 69
7.2 Software Testing Strategies 71
7.2.1 Black-box testing 72
7.2.2 White-box testing 73
7.3 Software Testing Processes and Steps 73
7.3.1 Unit testing 75
7.3.2 Integration testing 76
7.3.3 Verification testing 78
7.3.4 System testing 78
7.3.5 Validation 79
7.4 Software Performance Testing 79
7.4.1 Availability testing 80
7.4.2 Reliability testing 81
7.4.3 Survivability testing 81
7.4.4 Flexibility testing 81
7.4.5 Stress testing 82
7.4.6 Security testing 82
7.4.7 Usability testing 82
7.4.8 Maintainability testing 83
7.5 Software Maintenance 84
7.6 Summary 85

Part II Real-World Applications 91

9 An Object-Oriented Reconfigurable Software 93
9.1 Introduction 94
9.1.1 Evolution of reconfigurable software 94
9.2 Design Requirements, Development Environments, and Methodologies 105
9.2.1 Design requirements 105
9.2.2 Development environments 106
9.2.3 Development methodologies 107
9.3 IMC System Structure and Software Design 108
 9.3.1 Overall structure of IMC systems 108
 9.3.2 Configuration-based IMC software 111
 9.3.3 Reconfigurable IMC software design 112
 9.3.4 Development tool selection 113
 9.3.5 Object-oriented methodology 115
 9.3.6 Windows programming 118
 9.3.7 Database technologies 118
 9.3.8 Relational database model 119
 9.3.9 Database management system (DBMS) 119
 9.3.10 Database application 120
 9.3.11 Delphi database functionality 122
9.4 RSFIMC Architecture 122
 9.4.1 Data acquisition module 124
 9.4.2 Data processing module 124
 9.4.3 Data browsing module 125
9.5 RSFIMC Functions 126
 9.5.1 User configuration 126
 9.5.2 Running status indications 133
 9.5.3 Alarm management 134
 9.5.4 Data exchange 135
 9.5.5 Visual database query 140
 9.5.6 Remote communication 142
9.6 Summary 144

10 Flexible Measurement Point Management 151
 10.1 Introduction 152
 10.2 System Architecture 153
 10.2.1 Overall architecture 154
 10.2.2 Interfaces with other modules 157
 10.3 Development Platform and Environment 157
 10.4 Measurement Point Management 158
 10.4.1 MP configuration 158
 10.4.2 Task configuration 159
 10.4.3 Dynamic configuration of MPs and tasks 160
 10.4.4 System running 161
 10.5 An Illustrative Example on a Serial Port Driver 167
 10.5.1 Serial port hardware driver 168
10.5.2 Serial port system driver 170
10.5.3 DIT maintenance for serial port system driver 171
10.5.4 Hardware simulation terminal 172
10.6 Summary 172

11 A Blending System Using Multithreaded Programming 179
11.1 Introduction 179
11.2 Overall Blending System Configuration 181
 11.2.1 Hardware configuration 181
 11.2.2 Software configuration 183
 11.2.3 Multithread-based communication 183
11.3 The Overall Software Design 185
 11.3.1 Design requirements 186
 11.3.2 Software structure 188
 11.3.3 VxD 189
 11.3.4 Front-end software 189
 11.3.5 Device management module 190
 11.3.6 User management 190
 11.3.7 Database management 190
11.4 Field Experience and Summary 190
 11.4.1 Field experience 191
 11.4.2 Summary 191

12 A Flexible Automatic Test System for Rotating Turbine Machinery 197
12.1 Introduction 198
12.2 Design Goals of FATSFTM 199
12.3 Design Strategies of FATSFTM 201
 12.3.1 Hardware design strategy 201
 12.3.2 Software design strategy 202
12.4 Test Software Development Process 206
 12.4.1 Requirements capture 207
 12.4.2 Analysis 207
 12.4.3 Design 212
 12.4.4 Programming 219
 12.4.5 Testing 220
12.5 Function of FATSFTM 221
 12.5.1 Initialization and self-examination 221
12.5.2 Data acquisition 222
12.5.3 User configuration 222
12.5.4 Running status indication and real-time/historical data analysis 223
12.5.5 Alarm management and post-fault diagnosis 224
12.5.6 Remote test 227
12.5.7 Other system functions 228
12.6 Implementation and Field Experience 229
 12.6.1 On-site implementation and field experience 229
 12.6.2 System benefits 230
12.7 Summary 232

13 An Internet-Based Online Real-Time Condition Monitoring System 239
 13.1 Introduction 239
 13.2 Problem Description 241
 13.2.1 Field data acquisition devices 241
 13.2.2 Field data acquisition workstation 242
 13.2.3 System servers 243
 13.2.4 Remote browsers 243
 13.3 Requirements Capture and Elicitation 244
 13.3.1 Data acquisition workstation software 245
 13.3.2 Analysis (diagnosis) and management workstation software 245
 13.4 Analysis 246
 13.4.1 Data-flow model 246
 13.4.2 Entity–relationship model 249
 13.4.3 Event–response model 250
 13.5 Transition to Design 251
 13.5.1 Choice of development strategies 252
 13.5.2 Choice of development environment and programming tool 254
 13.6 Overall Design 259
 13.6.1 Database design 260
 13.6.2 Overall design of DAQ workstation software 263
 13.6.3 Overall design of the A&M workstation software 279
13.6.4 Design of Web server CGI application 282
13.7 Detailed System Design and Implementation 282
 13.7.1 Implementation of DAQ module 282
 13.7.2 Implementation of data management module 285
 13.7.3 Communication module 287
 13.7.4 Multitasking coordination 291
 13.7.5 Implementation of Web server 293
13.8 Field Experience 295
13.9 Summary 298

14 Epilog 303
 14.1 Middleware 303
 14.2 Unified Modeling Language (UML) 304
 14.3 Agent-based software development 305
 14.4 Agile methodologies 308
 14.5 Summary 309

Index 310
List of Figures

1.1 A typical industrial automation system. 2
2.1 Basic framework of automated measurement system based on virtual instruments. 24
2.2 The structure of PLPGN monitoring system. 25
2.3 Hardware configuration of the PLPGN monitoring system. 28
2.4 Software functions of the PLPGN monitoring system. 29
3.1 Delphi’s VCL object hierarchy. 36
3.2 Virtual instrument object. 38
4.1 Phase tasks in the software life cycle. 45
4.2 Incremental software development model. 47
6.1 The generic ODBC architecture. 67
7.1 Software testing stages. 74
7.2 Software testing steps. 75
7.3 Test sequence in top-down integration testing. 77
7.4 Test sequence in bottom-up testing. 78
7.5 Real-time monitoring and control system. 80
7.6 Software maintenance. 84
9.1 Reconfigurable software in IMC system. 103
9.2 Basic architecture of IMC system. 109
9.3 Database software system constitution. 120
9.4 Delphi database system structure. 123
9.5 Overall structure of the RSFIMC. 123
9.6 Data processing in RSFIMC. 124
9.7 MP configuration interface. 127
9.8 Task configuration interface. 127
9.9 Structure of the data processing module. 128
9.10 New variable calculation process. 131
9.11 New variable calculation data flow. 132
9.12 Screenshot of new variable calculation interface. 133
9.13 Screenshot of status indication interface. 134
9.14 Message handling in Windows applications. 135
9.15 Information flow of the real-time alarm system. 136
9.16 API interfaces in MS Excel. 137
9.17 Screenshot of OLE Automation interface. 141
9.18 Process of visual database query. 143
9.19 Screenshot of visual database query interface. 143
10.1 Overall structure of industrial reconfigurable supervision software. 154
10.2 The architecture of MP management module. 156
10.3 Running module architecture for MP management module. 163
10.4 Driver loading process in the MP management module. 165
10.5 Task scanning mechanism. 166
10.6 Task priority management mechanism. 166
10.7 Snapshot of the GUI-based operational panel. 168
10.8 Schematic diagram of the serial driver testing. 172
10.9 Communication mechanism in RS232Drv. 173
10.10 Communication mechanism in the hardware simulation terminal. 174
11.1 Flowchart of the automated blending system. 182
11.2 The hardware setup. 182
11.3 The overall software structure. 183
11.4 Package formats for communication between ICPC and PLC. 184
11.5 PLC communication mechanism. 186
11.6 Data flowchart of the communication sub-thread. 187
11.7 The data flow between VxD and front-end software. 188
11.8 Snapshot of working status for the blending system. 188
12.1 The framework of FATSFTM. 199
12.2 Hardware architecture of FATSFTM. 201
12.3 OOA model structure. 204
12.4 OOD model structure. 205
12.5 Software structure of FATSFTM. 206
12.6 Data-flow diagram. 208
12.7 Entity-relationship diagram (ERD). 209
12.8 State transition diagram (STD). 209
12.9 Whole-part relationship based on physical containment. 213
12.10 Whole-part relationship based on physical association. 213
12.11 Generalization-specialization relationship. 213
12.12 Subject layer in the OOA model. 214
12.13 Class structure in DAQ. 216
12.14 Directory structure of FATSFTM. 218
12.15 An overview of FATSFTM functions. 221
12.16 IMP for distributed data acquisition. 222
12.17 Screen capture of Bode chart in the running FATSFTM. 225
12.18 Mechanism of alarm management module. 226
12.19 Architecture of fault diagnosis module. 228
12.20 Plant layout. 229
12.21 Number of machine defects detected in test process at different stages. 231
12.22 Average monthly test cost at different project stages. 232

13.1 Configuration of the Internet-based online condition monitoring system. 241
13.2 Data-flow diagram of overall distributed condition monitoring software. 247
13.3 Data-flow diagram of data acquisition workstation module 1. 248
13.4 Data-flow diagram of data processing module 1.1. 248
13.5 Data-flow diagram of data acquisition module 1.2. 249
13.6 System entity–relationship diagram. 250
13.7 Module structure of the data acquisition workstation. 270
13.8 Module structure of the A&M workstation software. 280
13.9 Data flowchart of the in-house developed DAQ driver. 285
13.10 Basic ODBC architecture. 286
13.11 Datagram-socket-based communication. 290
13.12 Stream-socket-based communication. 290
13.13 CGI-based communication mechanism. 294
13.14 Screen capture of real-time waveforms in spectral analysis. 298
List of Tables

3.1 Main properties and methods in VI base class 39
9.1 Language evolution 121
9.2 Structure of the real-time database 128
9.3 Structure of the original historical database 129
9.4 Structure of the medium-term database 129
9.5 Structure of the processed database 130
9.6 Structure of the alarm configuration database 130
9.7 Structure of the alarm record database 130
9.8 Formula database structure 133
10.1 Performance comparison between the earlier manual system and the automatic supervision system 175
11.1 Event–response relationships for the automatic blending system 194
11.2 User management for the automatic blending system 195
11.3 Database management for the automatic blending system 195
12.1 System state list 210
12.2 Event-response model 211
12.3 Partial OOA/OOD working table 212
12.4 OOA Model 236
12.5 Databases in FATSFTM 237
13.1 System event-response model 251
13.2 System database 261
13.3 Workstation configuration table 262
13.4 Machine configuration table 263
13.5 MP configuration table 264
13.6 Historical data record strategy selection table 264
13.7 Vibration variable channel configuration table 265
13.8 Process variable channel configuration table 265
13.9 Report format selection table 266
13.10 Record strategy definition table 266
13.11 Server and A&M workstation properties table 267
13.12 Vibration variable real-time data table 267
13.13 Process variable real-time data table 268
13.14 Switch variable real-time data table 268
13.15 Medium-term historical database table for vibration variables 269
13.16 Detailed composition of variables 270
13.17 Record configuration (cluster) 271
13.18 Report configuration 271
13.19 Current machine alarm channel table 272
13.20 Back-end processing software status 272
13.21 Startup/shutdown status 272
13.22 Server properties 272
13.23 Server properties 280
13.24 Workstation communication properties (array) 281
13.25 Major modules of A&M workstation software 281
13.26 Measurement range 283
13.27 Frequency response 283
13.28 A/D resolution 284
13.29 Input impedance 284
13.30 Measurement accuracy 284
13.31 Priorities of some major system modules 298