CONTENTS

Preface xiii

PART I OVERVIEW 1

1 Systems, Projects, and Management 3
 1.1 Introduction, 3
 1.2 Systems and Projects, 3
 1.3 Problems in Managing Engineering Projects, 12
 1.4 The Systems Approach, 17
 1.5 The Project Organization, 21
 1.6 Organizational Environments and Factors, 25
 1.7 Large-Scale Organization and Management Issues, 33
 Questions/Exercises, 38
 References, 39

2 Overview of Essentials 41
 2.1 Introduction, 41
 2.2 Project Management Essentials, 41
 2.3 Systems Engineering Process and Management Essentials, 45

vii
CONTENTS

2.4 Historical Overview of Acquisition Notions, 49
2.5 Selected Standards, 53
Questions/Exercises, 66
References, 67

PART II PROJECT MANAGEMENT 69

3 The Project Plan 71
3.1 Introduction, 71
3.2 Needs, Goals, Objectives, and Requirements, 72
3.3 Task Statements, Statement of Work (SOW), and Work Breakdown Structure (WBS), 78
3.4 Technical Approach, 80
3.5 Schedule, 83
3.6 Organization, Staffing, and Task Responsibility Matrix (TRM), 86
3.7 Budget, 86
3.8 Risk Analysis, 90
3.9 The Proposal, 92
3.10 SEMP and SEP, 92
Questions/Exercises, 95
References, 96

4 Schedule, Cost, and Situation Analysis 99
4.1 Introduction, 99
4.2 Schedule Analysis and Monitoring, 100
4.3 Cost Analysis and Monitoring, 104
4.4 Situation Analysis (SA), 122
Questions/Exercises, 128
References, 130

5 The Project Manager and Leadership 131
5.1 Introduction, 131
5.2 Project Manager Attributes, 132
5.3 Self-Evaluation, 139
5.4 Interactions with Your Supervisor, 147
5.5 Customer Interaction, 151
CONTENTS

5.6 Leadership, 152
Questions/Exercises, 157
References, 158

6 Team Building and Team Interactions 159

6.1 Introduction, 159
6.2 Communications, 160
6.3 Building the Project Team, 162
6.4 Team Busters, 166
6.5 Conflict Management, 168
6.6 Meetings, 171
6.7 Presentations, 173
6.8 Proposals, 176
6.9 A Note on Motivation and Incentives, 182
6.10 Another Team-Related Perspective, 184
6.11 Group Processes, 187
Questions/Exercises, 189
References, 190

PART III SYSTEMS ENGINEERING AND MANAGEMENT 191

7 The Thirty Elements of Systems Engineering 191

7.1 Overview of the Systems Approach and Engineering Process, 193
7.2 Two Systems Engineering Perspectives, 194
7.3 The Thirty Elements of Systems Engineering, 199
7.4 The Importance of Domain Knowledge in Systems Engineering, 230
Questions/Exercises, 231
References, 231

8 Requirements Analysis and Allocation 233

8.1 Introduction, 233
8.2 Department of Defense (DOD) Perspectives, 234
8.3 A National Aeronautics and Space Administration (NASA) Perspective, 237
8.4 The Organization of Requirements Statements, 238
8.5 Specific Requirements Statements, 242
CONTENTS

8.6 Essential Steps of Requirements Analysis, 244
8.7 Derived and Allocated Requirements, 248
8.8 Other Requirements Issues, 251
Questions/Exercises, 255
References, 256

9 Systems Architecting: Principles 257

9.1 Introduction, 257
9.2 A View of Systems Architecting, 258
9.3 A National Aeronautics and Space Administration (NASA) Perspective, 259
9.4 Architecture Descriptions, 261
9.5 Essential Steps of System Architecting, 269
9.6 The 95% Solution, 286
9.7 Trade-Offs and Sensitivity Analyses, 287
9.8 Modeling and Simulation, 293
9.9 Other Architectures and Tools, 297
9.10 Summary, 300
Questions/Exercises, 301
References, 302

10 Software Engineering 305

10.1 Introduction, 305
10.2 Standards, 306
10.3 Software Management Strategies, 313
10.4 Capability Maturity, 316
10.5 Metrics, 319
10.6 The Systems Engineer and Software Engineering, 329
10.7 Summary, 332
Questions/Exercises, 333
References, 334

11 Selected Quantitative Relationships 337

11.1 Introduction, 337
11.2 Basic Probability Relationships, 338
11.3 The Binomial Distribution, 345
11.4 The Poisson Distribution, 346
11.5 The Normal (Gaussian) Distribution, 347
CONTENTS

11.6 The Uniform Distribution, 349
11.7 The Exponential Distribution, 350
11.8 The Rayleigh Distribution, 351
11.9 Error Analyses, 352
11.10 Radar Signal Detection, 353
11.11 System Reliability, 357
11.12 Software Reliability, 361
11.13 Availability, 361
11.14 A Least Squares Fit, 362
11.15 Summary, 363

Questions/Exercises, 365
References, 366

PART IV TRENDS, PERSPECTIVES, AND INTEGRATIVE MANAGEMENT 367

12 Systems/Software Engineering and Project Management Trends 369

12.1 Introduction, 369
12.2 Systems Engineering Trends, 369
12.3 Software Engineering Trends, 386
12.4 Project Management Trends, 400

Questions/Exercises, 404
References, 404

13 Selected New Perspectives 409

13.1 Introduction, 409
13.2 Role of INCOSE, 409
13.3 Acquisition of Systems, 410
13.4 Problems in Systems and Software, 418
13.5 Integration of Systems, 419

Questions/Exercises, 430
References, 431

14 Integrative Management 433

14.1 Introduction, 433
14.2 Managers as Integrators, 434
14.3 Teams as Integrators, 435
CONTENTS

14.4 Plans as Integrators, 437
14.5 The Systems Approach as Integrator, 439
14.6 Methods and Standards as Integrators, 440
14.7 Information Systems as Integrators, 441
14.8 Enterprises as Integrators, 442
14.9 Thinking Outside the Box, 443
14.10 Summary, 447

Questions/Exercises, 447
References, 448

Appendix: Systems Architecting—Cases 451

A.1 Introduction, 451
A.2 A Logistics Support System (Case 1), 452
A.3 A Software Defects Assessment System (Case 2), 457
A.4 A Systems Engineering Environment (Case 3), 462
A.5 An Anemometry System (Case 4), 470
A.6 Summary, 480

References, 480

Index 481