Index

Numbers in *italics* refer to illustrations. Numbers in **boldface** refer to illustrated case studies.

Aalto, Alvar, 2	Architects Collaborative, 7
ACCAC Manual, 36, 37	*Architecture* magazine, 316
active solar design, 42, 289, 305.	Architectus, 2030, 29, 49
See also solar energy	Arch Systems, 54
addendum, defined, 73	Armani, Giorgio, 89
Advanced Glazing, 54	art deco, 88, 89
Aerogel, 55	art nouveau, 88, 89
aesthetic movement, 88	arts and crafts movement, 88
agreement for homebuilders, defined, 72	ash-glass porous construction filler, recycled, 51
air conditioner efficiency, 37. See also heating, ventilating, and air conditioning (HVAC) systems	Associates III, 90
Air Conditioning Contractors of America (ACCA) Manual, 36, 37	asthma, 90
air infiltration building envelope, 36	attic space, HVAC systems, 36–37
case study, 307–308	Auburn University Rural Studio program, 10, 49–50, 51
air quality. See indoor air quality	Auburn University School of Architecture, 295–301
air-sealing, construction methods, 22	Austin Energy Green Building, 30
allergies, 90	Australia Architecture Association, 11
aluminum foam, 56	Badanes, Steve, 49
American Institute of Architects (AIA), 52, 72–73	bamboo, sustainable materials, 52, 54
American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), 38, 75	Bambu, 55
American Society of Interior Designers (ASID), 33	Barcelona Pavilion (Mies van der Rohe), 43
American Solar Energy Society (ASES), 42	Barnsdale House (Wright), 199
American Wind Energy Association (AWEA), 42	bathrooms, water efficiency, 32
Annualized Fuel Utilization Efficiency (AFUE), 37	Bauhaus style, 7, 88
appliances. See also energy efficiency and conservation; ENERGY STAR program	Beals, Jennifer, 199
case study, 308	Beals, Justin, 199
systems approach, 38–39	Beals’ Residence, Atlanta, Georgia (Lightroom Studio, William Carpenter), 4–5, 199–212
arborist, construction documents, 74–75. See also landscape architecture; site placement	Beaux Arts period, 7
BLIP Design, 285–294	beeswax, 55
blower door test, air infiltration, 36	Bell Telephone kiosk, 3, 5
Bowles, Meredith, 101–112	Benjamin Moore, 55
Boxhead healthy house case study, 92–97	bid/build process, schematic design, 12
Braungart, Michael, 5, 48–49, 96	bidding requirements, defined, 73
brick, sustainable materials, 52	BIN modeling, 12
buffer rooms, passive solar design, 42	Black House, Prickwillow, England (Meredith Bowles, Mole Architects), 101–112
Building America program, 16, 17, 18, 22, 26–27, 29–30	Building America Greenhouse, 30
building architecture, systems compatibility, 20–21	Built Green program, 30, 285
building envelope case study, 307–308	Burton, James, 43–56, 113, 133–144, 285–294
moisture control, 30–31	Bush, Diane, 213, 216
systems approach, 33–36	Bush Residence, Atlanta, Georgia (William Carpenter, Lightroom Studio), 6, 86, 87, 213–221
Building Green, Inc., 49	Built Green program, 16, 17, 18, 19, 22, 26–27, 29–30
building paper, moisture control, 40	California Solar Energy Federation, 41
building-related illnesses (BRI), 90	building sections, working drawings, 78, 79
Canadian Mortgage and Housing Corporation/Equilibrium Housing, 27	building style, systems compatibility, 20–21
carports, passive solar design, 42	Carter + Burton Architecture, 92–97, 113–132, 133–144
Carson, Rachel, 3, 90	Carter Residence, Atlanta, Georgia (William Carpenter and Timothy Nichols, Lightroom Studio), 8, 46–47, 249–252
Chrysler Building (New York, New York), 88	Cerritos College, 318–319
chases, building envelope, 35–36	ceiling plan, working drawings, 78
climate and climate zones building envelope, 34	celebrity culture, interiors, 89
climate and climate zones building envelope, 34	Centria Architectural systems, 56
climate and climate zones building envelope, 34	certification standards and, materials, 48–49
contractors, 17	testing and, contractors, 27–28
HVAC systems, 38	chalk-polymer composite, 56
Modernist principles, 5	change order, defined, 73
passive solar design, 41	chases, building envelope, 35–36
collaborative efforts design process, 9, 60	landscape architecture, 60
comfort foundations, 18	computer-aided design (CAD), 7
green building construction, 17	community development corporations (CDCs), 313–314
corporate development corporations (CDCs), 313–314	compact fluorescent lighting, 39
compatibility, of systems, contractors, 20–21	climate change, 316–317
component systems, materials, 51–52	climate change, 316–317
composite polymers, 56	climate change, 316–317

332 INDEX
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>concrete</td>
<td>23</td>
</tr>
<tr>
<td>structural drawings</td>
<td>82</td>
</tr>
<tr>
<td>sustainable materials</td>
<td>52</td>
</tr>
<tr>
<td>concrete pavers, recycled</td>
<td>51</td>
</tr>
<tr>
<td>condition of contract</td>
<td>73</td>
</tr>
<tr>
<td>contract documents</td>
<td>71–84</td>
</tr>
<tr>
<td>construction costs</td>
<td>25</td>
</tr>
<tr>
<td>construction documents</td>
<td>71–75</td>
</tr>
<tr>
<td>process enumeration</td>
<td>74</td>
</tr>
<tr>
<td>specifications preparation</td>
<td>82</td>
</tr>
<tr>
<td>terminology in</td>
<td>72–73</td>
</tr>
<tr>
<td>working drawings</td>
<td>76–82</td>
</tr>
<tr>
<td>construction methods</td>
<td>22–24</td>
</tr>
<tr>
<td>contractors</td>
<td>22–24</td>
</tr>
<tr>
<td>radon-resistance construction</td>
<td>32</td>
</tr>
<tr>
<td>construction process</td>
<td>27</td>
</tr>
<tr>
<td>Construction Specifications</td>
<td>Institute (CSI), 49</td>
</tr>
<tr>
<td>contract documents</td>
<td>75–76</td>
</tr>
<tr>
<td>defined</td>
<td>72, 73</td>
</tr>
<tr>
<td>contractors</td>
<td>14–28</td>
</tr>
<tr>
<td>climate zone</td>
<td>17</td>
</tr>
<tr>
<td>construction methods</td>
<td>22–24</td>
</tr>
<tr>
<td>construction process</td>
<td>27</td>
</tr>
<tr>
<td>exterior finishes</td>
<td>19</td>
</tr>
<tr>
<td>foundations</td>
<td>18</td>
</tr>
<tr>
<td>insulation</td>
<td>18–19</td>
</tr>
<tr>
<td>materials selection</td>
<td>21</td>
</tr>
<tr>
<td>objectives</td>
<td>16–17</td>
</tr>
<tr>
<td>overview</td>
<td>14–16</td>
</tr>
<tr>
<td>programs and providers</td>
<td>26–27</td>
</tr>
<tr>
<td>roof systems</td>
<td>19</td>
</tr>
<tr>
<td>site orientation</td>
<td>17</td>
</tr>
<tr>
<td>site placement</td>
<td>17</td>
</tr>
<tr>
<td>systems compatibility</td>
<td>20–21</td>
</tr>
<tr>
<td>testing and certification</td>
<td>27–28</td>
</tr>
<tr>
<td>windows and doors</td>
<td>19–20</td>
</tr>
<tr>
<td>copper roofs</td>
<td>53</td>
</tr>
<tr>
<td>corporations</td>
<td>48</td>
</tr>
<tr>
<td>ethics</td>
<td>48</td>
</tr>
<tr>
<td>sustainability concept</td>
<td>1</td>
</tr>
<tr>
<td>costs</td>
<td>25</td>
</tr>
<tr>
<td>design process</td>
<td>10–11</td>
</tr>
<tr>
<td>cover sheet, working drawings</td>
<td>76</td>
</tr>
<tr>
<td>cradle to cradle design</td>
<td>48–49, 96, 97</td>
</tr>
<tr>
<td>certification</td>
<td>48–49, 96, 97</td>
</tr>
<tr>
<td>crawl space</td>
<td>18</td>
</tr>
<tr>
<td>foundations</td>
<td>18</td>
</tr>
<tr>
<td>HVAC systems</td>
<td>36–37</td>
</tr>
<tr>
<td>cubism</td>
<td>88</td>
</tr>
<tr>
<td>cultural significance</td>
<td>45</td>
</tr>
<tr>
<td>Daughtery, Edward</td>
<td>60</td>
</tr>
<tr>
<td>day-use rooms, passive solar</td>
<td>41</td>
</tr>
<tr>
<td>design process</td>
<td>13</td>
</tr>
<tr>
<td>dehumidification</td>
<td>38</td>
</tr>
<tr>
<td>exhaust fans</td>
<td>38</td>
</tr>
<tr>
<td>HVAC systems</td>
<td>36, 37</td>
</tr>
<tr>
<td>indoor air quality</td>
<td>39–40</td>
</tr>
<tr>
<td>Dent, Andrew H.,</td>
<td>43</td>
</tr>
<tr>
<td>design/build practice, Studio 804</td>
<td>313–329</td>
</tr>
<tr>
<td>Design for Disassembly</td>
<td>24</td>
</tr>
<tr>
<td>DESIGNhabitat 2 Initiative</td>
<td>School of Architecture at Auburn University, 30, 295–301</td>
</tr>
<tr>
<td>design movements, interiors</td>
<td>88–89</td>
</tr>
<tr>
<td>design process</td>
<td>6–13</td>
</tr>
<tr>
<td>client education</td>
<td>10</td>
</tr>
<tr>
<td>collaborative efforts</td>
<td>9, 60</td>
</tr>
<tr>
<td>construction documents</td>
<td>13</td>
</tr>
<tr>
<td>costs</td>
<td>10–11</td>
</tr>
<tr>
<td>development phase</td>
<td>12–13</td>
</tr>
<tr>
<td>overview</td>
<td>6–7</td>
</tr>
<tr>
<td>predesign and site analysis</td>
<td>11–12</td>
</tr>
<tr>
<td>schematic design</td>
<td>12</td>
</tr>
<tr>
<td>sustainability</td>
<td>9</td>
</tr>
<tr>
<td>systems approach</td>
<td>33</td>
</tr>
<tr>
<td>technology</td>
<td>8</td>
</tr>
<tr>
<td>details, working drawings</td>
<td>79</td>
</tr>
<tr>
<td>development phase, design process</td>
<td>12–13</td>
</tr>
<tr>
<td>DiCaprio, Leonardo</td>
<td>89</td>
</tr>
<tr>
<td>documentation, construction</td>
<td>27</td>
</tr>
<tr>
<td>process</td>
<td>27</td>
</tr>
<tr>
<td>Dominey, Todd</td>
<td>222</td>
</tr>
<tr>
<td>Dominey Residence, Atlanta</td>
<td>15, 18</td>
</tr>
<tr>
<td>Georgia (William Carpenter, Lightroom Studio), 15, 18, 222–231</td>
<td></td>
</tr>
<tr>
<td>Dominey Residence addition case study, 68</td>
<td></td>
</tr>
<tr>
<td>doors</td>
<td>34</td>
</tr>
<tr>
<td>building envelope</td>
<td>34</td>
</tr>
<tr>
<td>contractors</td>
<td>19–20</td>
</tr>
<tr>
<td>moisture control</td>
<td>40</td>
</tr>
<tr>
<td>door schedule, working drawings</td>
<td>79</td>
</tr>
<tr>
<td>Dow, Alden</td>
<td>51</td>
</tr>
<tr>
<td>drainage</td>
<td>23</td>
</tr>
<tr>
<td>construction methods</td>
<td>23</td>
</tr>
<tr>
<td>costs</td>
<td>25</td>
</tr>
<tr>
<td>ductless minisplit systems</td>
<td>38</td>
</tr>
<tr>
<td>duct pressure test</td>
<td>HVAC systems, 37</td>
</tr>
<tr>
<td>durability</td>
<td>22</td>
</tr>
<tr>
<td>foundations</td>
<td>18</td>
</tr>
<tr>
<td>green building construction</td>
<td>16–17</td>
</tr>
<tr>
<td>materials</td>
<td>21, 45</td>
</tr>
<tr>
<td>dust mites, relative humidity</td>
<td>39</td>
</tr>
<tr>
<td>Eames, Charles</td>
<td>43</td>
</tr>
<tr>
<td>Eames, Ray</td>
<td>43</td>
</tr>
<tr>
<td>EarthCraft Homes program</td>
<td>16, 25, 26, 30, 31, 33, 49</td>
</tr>
<tr>
<td>Ebano, 55</td>
<td>Eco resin, 56</td>
</tr>
<tr>
<td>education</td>
<td>10</td>
</tr>
<tr>
<td>client education, design process</td>
<td>10</td>
</tr>
<tr>
<td>of homeowner</td>
<td>32–33, 38</td>
</tr>
<tr>
<td>landscape architecture</td>
<td>61</td>
</tr>
<tr>
<td>materials</td>
<td>45</td>
</tr>
<tr>
<td>efficiency</td>
<td>38</td>
</tr>
<tr>
<td>hot water heating</td>
<td>38</td>
</tr>
<tr>
<td>HVAC systems</td>
<td>37</td>
</tr>
<tr>
<td>Modernist principles</td>
<td>3</td>
</tr>
<tr>
<td>Ehrlich, Steven</td>
<td>86, 87</td>
</tr>
<tr>
<td>electrical drawings</td>
<td>80</td>
</tr>
<tr>
<td>electrical engineer, construction documents, 75</td>
<td></td>
</tr>
<tr>
<td>electrical loads, systems approach, 38–39</td>
<td></td>
</tr>
<tr>
<td>electric grid, active solar design, 42</td>
<td></td>
</tr>
<tr>
<td>The Eleventh Hour (film)</td>
<td>89</td>
</tr>
<tr>
<td>embedded energy</td>
<td>45</td>
</tr>
<tr>
<td>Energy and Environmental Building Association (EEBA), 16, 17, 18, 22, 23, 26</td>
<td></td>
</tr>
<tr>
<td>energy crisis, design process</td>
<td>7</td>
</tr>
<tr>
<td>energy efficiency and conservation</td>
<td>active solar design, 42</td>
</tr>
<tr>
<td>building envelope</td>
<td>33–36</td>
</tr>
<tr>
<td>case studies</td>
<td>190–191, 308</td>
</tr>
<tr>
<td>construction methods</td>
<td>22</td>
</tr>
<tr>
<td>costs</td>
<td>25</td>
</tr>
<tr>
<td>design process</td>
<td>12–13</td>
</tr>
<tr>
<td>Dow, Alden, 51</td>
<td>16</td>
</tr>
<tr>
<td>heating</td>
<td>38</td>
</tr>
<tr>
<td>HVAC systems</td>
<td>37–38</td>
</tr>
<tr>
<td>materials selection</td>
<td>21</td>
</tr>
<tr>
<td>Modernist principles</td>
<td>3</td>
</tr>
<tr>
<td>passive solar design</td>
<td>41</td>
</tr>
<tr>
<td>residential housing sector</td>
<td>29</td>
</tr>
<tr>
<td>systems approach</td>
<td>31–32</td>
</tr>
<tr>
<td>2030 Challenge</td>
<td>29–30</td>
</tr>
<tr>
<td>wind systems</td>
<td>42</td>
</tr>
<tr>
<td>Energy Policy Act of 2005</td>
<td>31</td>
</tr>
<tr>
<td>energy recovery ventilator (ERV)</td>
<td>32, 38</td>
</tr>
<tr>
<td>ENERGY STAR program</td>
<td>22, 30, 31, 32, 33, 34, 35, 38–39, 289</td>
</tr>
<tr>
<td>construction documents</td>
<td>78, 79, 80</td>
</tr>
<tr>
<td>costs</td>
<td>25</td>
</tr>
<tr>
<td>described, 16, 26</td>
<td></td>
</tr>
<tr>
<td>testing and certification</td>
<td>27, 28, 49</td>
</tr>
<tr>
<td>engineered materials</td>
<td>23</td>
</tr>
<tr>
<td>engineered wood, materials</td>
<td>52</td>
</tr>
<tr>
<td>environmental consultant,</td>
<td>75</td>
</tr>
<tr>
<td>construction documents</td>
<td>75</td>
</tr>
<tr>
<td>environmental impact</td>
<td>22</td>
</tr>
<tr>
<td>construction methods</td>
<td>22</td>
</tr>
<tr>
<td>environmental movement design process, 7</td>
<td></td>
</tr>
<tr>
<td>historical perspective</td>
<td>3, 5</td>
</tr>
<tr>
<td>EQuilibrium Housing/Canadian Mortgage and Housing Corporation, 27</td>
<td></td>
</tr>
<tr>
<td>Ergon, 54</td>
<td>145–160</td>
</tr>
<tr>
<td>Erlich, Steven</td>
<td>145–160</td>
</tr>
<tr>
<td>Esposizione Internazionale d’Arte Decorative Moderna (Turin, Italy, 1902), 88</td>
<td></td>
</tr>
<tr>
<td>Essroc Italcementi Group</td>
<td>51</td>
</tr>
<tr>
<td>ethics</td>
<td>48</td>
</tr>
<tr>
<td>sustainability concept</td>
<td>48</td>
</tr>
<tr>
<td>exhaust fans, HVAC systems</td>
<td>38</td>
</tr>
<tr>
<td>exterior elevations, working</td>
<td>7</td>
</tr>
<tr>
<td>drawings</td>
<td>78, 79</td>
</tr>
<tr>
<td>exterior finishes</td>
<td>19</td>
</tr>
<tr>
<td>contractors</td>
<td>19</td>
</tr>
<tr>
<td>durability</td>
<td>22</td>
</tr>
<tr>
<td>materials selection</td>
<td>16</td>
</tr>
<tr>
<td>exterior insulation finish system (EIFS), 44</td>
<td></td>
</tr>
<tr>
<td>Farnsworth House (Mies van der Rohe), 1, 3</td>
<td></td>
</tr>
<tr>
<td>fashion, interiors</td>
<td>89</td>
</tr>
<tr>
<td>fiberboard, materials</td>
<td>50, 54</td>
</tr>
</tbody>
</table>
INDEX 335

defined, 58
Domény Residence addition
case study, 68
education, 61
historical perspective, 57
Hojnacki Residence addition
case study, 66–67
information sources, 70
permaculture design, 69
site placement, 59
James van Sweden Residence
case study, 61–65
team approach, 61
working drawings, 76–77
landscape designer, construction
documents, 75
landscape plan, working
drawings, 78
latent cooling, 36
Leadership in Energy and
Environmental Design (LEED) program, 8, 21, 30, 54, 56, 256, 302, 304, 305, 307
construction documents, 71–84
described, 16, 26
interior design, 94–96, 97
testing and certification, 27–28, 48
Lead Pencil Studio, 277–284
Le Corbusier, 56
LEED program. See Leadership in
Energy and Environmental Design (LEED) program
Lewitt, Sol, 213
life-cycle
craddle to cradle certification, 48–49
materials, 45
light analysis, schematic design, 12
Lightcatcher, Atlanta, Georgia
(William Carpenter,
Lightroom Studio), 232–238
light emitting diodes (LEDs)
technology, 39, 51, 305, 308
lighting, systems approach, 38–39
lighting controls, 39
Lightroom Studio, Decatur,
Georgia (William Carpenter,
Lightroom Studio), 7, 239–248
LivingHomes, Los Angeles,
California (Ray Kappe, Ray
Kappe Architects and
Planners, Amy Sims), 302–312
living roofs, 53
local jurisdictional officials,
construction documents, 75
local source materials, 49–51
longevity, materials, 45
Lotus Exterior Paint, 54
Louis-Dreyfus, Julia, 89
Lovell House (Neutra), 3
Lyn, Maya, 11
Mahon, Annie, 133
Mahon, Paul, 133
Maltzan, Michael, 7
Malveaux, Floyd, 90
Maplex, 54
masonry
structural drawings, 82
sustainable materials, 52
mass production, handcrafting
versus, 45–48
Material ConneXion, 50
materials, 43–56
building envelope, 35
categories, 44–48
centrality of, 43–44
construction methods, 22
durability, 22
finishes, 54–56
green organizations, 16
insulation, 53–54
Modernism, 43
Modernist principles, 3
roofing systems, 53
selection of, 16, 21
sources of, 49–51
standards and certification, 48–49
sustainability concept, 21, 43, 44
volatile organic compounds
(VOCs), 21, 44, 55, 303, 305, 309
wall and component systems,
51–52
window U-factors, 35
Mazria, Edward, 5, 6, 29, 49
McDonough, William, 3, 5, 48–49, 96
McDonough Braungart Design
Chemistry, LLC (MBDC), 48–49, 96
McHarg, Ian, 57
mechanical drawings, working
drawings, 81
mechanical engineer
construction documents, 75
design process, 12–13
medium-density fiberboard, 54
Meet the Press (TV show), 43
Mendes, Eva, 89
mesquite wood, 54
metal roofs, 53
Meyron, Jacques de, 7
Mies van der Rohe, Ludwig, 1, 3,
13, 43
Mihalyo, Daniel, 277–284
Mikado porcelain tile, 54
Miller, Claudia, 91
Mingei movement, 46
minimum efficiency reporting
value (MERV), 38
minisplit systems, ductless, 38
miscellaneous electrical loads,
systems approach, 38–39
Mockbee, Samuel, 10, 49–50, 113
Modernist principles
historical perspective, 1–5, 88
materials, 43–44
modular construction. See also
prefabrication
DESIGNHabitat 2 Initiative
(School of Architecture at
Auburn University), 295–301
Studio 804, 313–329
moisture, indoor air quality, 39–40.
See also humidity
moisture control system, passive
solar design, 41
moisture protection, specifications, 82
mold, relative humidity, 39
Mole Architects, 101–112
Mollison, Bill, 69
Moneo, Rafael, 113
Morphosis, 3
Morris, William, 88
Morrison, Darrell, 61
Morse, Steven, 48
multiple chemical sensitivity
(MCS), 90–91, 92
Murcutt, Glenn, 11
Nakashima, George, 45–46
Nakashima, Mira, 45–46
Nanosys, 51
National Association of Home
Builders (NAHB) National
Green Building Program, 26
National Association of the
Remodeling Industry (NARI), 24
National Council for Interior
Design Qualification, 85
National Fenestration Rating
Council (NFRC), 34–35, 54
National Home Builders
Association, 16
National Institute of
Environmental Health
Sciences (NIEHS), 90
National Institutes of Health
(NIH), 90, 113
National Renewable Energy
Laboratory (NREL), 49
National Resources Defense
Council (NRDC), 94
natural-fiber-reinforced polymers,
55
net zero energy (NZE), 30
Neutra, Richard, 2, 3
New Age approach, 7, 8
Newton, Norman T., 60
New Zealand Institute of
Architects, 163
Nichols, Timothy, 46–47, 249–252
night-use rooms, passive solar
design, 41
Norman, Stacy, 295, 297
Oehme, van Sweden and
Associates (OVSLA), 61–65
Office dA, Inc., 43
Olgyay, Victor, 5
Olmsted, Frederick Law, 57
on-site source materials, 49–51
operational costs, contractors, 25
optimum value engineering,
building envelope, 35
organic architecture, 1–2, 89
organic light-emitting diodes
(OLEDs) technology, 51. See also light-emitting diodes
(LEDs) technology
Organic Trade Association, 89
organizations, certification and
standards, 48–49
organic architecture, 1–2, 89
organic light-emitting diodes
(OLEDs) technology, 51. See also light-emitting diodes
(LEDs) technology
Organic Trade Association, 89
organizations, certification and
standards, 48–49
organizations, 7
oriented strand board (OSB), 23,
51–52, 258
Orlic, Don, 113
OSB (oriented strand board), 23,
51–52, 258
Owens, Roland, 90
owner-architect agreement,
defined, 73
owner-contractor agreement,
defined, 72–73

Oehme, van Sweden and
Organic architecture, 1–2, 89
Organic light-emitting diodes
(OLEDs) technology, 51. See also light-emitting diodes
(LEDs) technology
Organic Trade Association, 89
organizations, certification and
standards, 48–49
organizations, 7
oriented strand board (OSB), 23,
51–52, 258
Orlic, Don, 113
OSB (oriented strand board), 23,
51–52, 258
Owens, Roland, 90
owner-architect agreement,
defined, 73
owner-contractor agreement,
defined, 72–73

pampas, 55
Palm Harbor Homes, 295, 297
paper brick, recycled, 50–51
“pass-fail” approach, 8
passive solar design, 40–42. See also solar energy
case studies, 182–183
described, 40–42
glazings, 54
Patrick Clifford, Architect, 161–176
pavers, concrete, recycled, 51
permaculture design, 69
photovoltaic solar panel systems
active solar design, 42, 289, 305
costs, 25
plastics, recycled, 50
plumbing drawings, working drawings, 80–81
plumbing engineer, construction documents, 75
plywood
construction methods, 23
materials, 50
politics, design process, 7
pollution. See also indoor air quality
design process, 12–13
spot ventilation, 38
polymer sheeting, recycled, 51
porches, passive solar design, 42
postmodern movement, 44
prairie design, 89
prAna, 89
predesign, design process, 11–12
Predock, Antoine, 12
prefabrication. See also modular construction
DESIGNhabitat 2 Initiative (School of Architecture at Auburn University), 295–301
LivingHomes, Los Angeles, California (Ray Kappe, Ray Kappe Architects and Planners, Amy Sims), 302–312
materials selection, 50
Modernist principles, 3
schematic design, 12
Shot-Trot House, Houston, Texas (Brett Zamore, Zamore Architects and Planners), 253–269
privacy rooms, passive solar design, 41
programming, design process, 11–12
Project 2030, 12
project manual, defined, 72
public health
interiors, 90–91
landscape architecture, 57
Pugh, Gwynne, 177–196
Pugh + Scarpa, 3, 43, 177–196
Pulte Homes, 52
radiant-floor heating, systems compatibility, 20
radon-resistant construction, 32, 40
Rainforest Alliance, 49
rain screen, moisture control, 40
rainwater, 309
rammed earth walls, 271, 273, 274–275
Ray Kappe Architects and Planners, 302–312
Raymond, Antonin, 46
reclaimed materials, materials selection, 21
recycling
construction methods, 24
construction process, 27
costs, 25
materials selection, 16, 21, 50–51
Redford, Robert, 89
reflected ceiling plan, working drawings, 78
regionalism, cultural significance, materials, 45
REGREEN, 33
reinforced thermoplastic composites, 55
relative humidity, indoor air quality, 39–40
renovations, systems approach, 33
Residential Energy Services Network (RESNET), 21, 22, 26, 34
residential interiors. See interiors
resins, recycled, 50
RESNET.com, 21, 22, 26, 34
Risher, Christopher, 44, 113
Roberts, Sydney G., 29–42
roof plan, working drawings, 78
roof systems
building envelope, 35
contractors, 19
materials, 53
rustic architecture, systems compatibility, 20–21
R-value
building envelope, 34–35
insulation, 53
materials, 52
Saarinen, Eliel, 85
Safecoat, 55
salvage
The 4-Parts House, Seattle, Washington (Annie Han and Daniel Mihalyo, Lead Pencil Studio), 277–284
materials sources, 49–51
San Francisco Federal Building (Morphosis), 3
Santoyo, Larry, 69
Saussy, Lynn F., 57–70, 66–68
Scarp, Lawrence, 177–196
schematic design, design process, 12
Schindler, Rudolf, 2
Seas, Roebuck and Company
house, 258
seasonal affect disorder (SAD), 56
seasonal energy efficiency ratio (SEER), 37
700 Palms Residence, Venice, California (Steven Ehrlich), 145–160
Shenandoah Retreat, Warren County, Virginia (Carter + Burton Architecture), 113–132
shipping, materials selection, 21
Shot-Trot House, Houston, Texas
(Brett Zamore, Zamore Homes), 253–269
sick building syndrome (SBS), 90
Silent Spring (Carson), 3
Sims, Amy, 302–312
site orientation
contractors, 17
Johnson-Jones Residence, Phoenix, Arizona (Jones Studio, Inc., Eddie Jones), 270–276
passive solar design, 41
site placement. See also landscape architecture
contractors, 17
costs, 25
landscape architecture, 59
passive solar design, 41
site plan
design process, 11–12
Modernist principles, 1–2, 3
working drawings, 77
site survey, working drawings, 76
SJ Morse Company, 48
skylights, building envelope, 34
slab-on-grade construction, foundations, 18, 39–40
SmartWrap, 51
sodium silicate, 55
Soens, Robert J., 14–28
Soetsu Yanagis Mingei movement, 46
soils
landscape architecture, 61
moisture control, 39–40
soils engineer, construction documents, 74
solar energy, 5
active solar design, 42, 289, 305
building envelope, 34–35
costs, 25
design process, 12–13
hot water heating, 38
passive solar design, 40–42, 54, 182–183
solar panel materials, 51
solar heat gain coefficient (SHGC), 35
Solar Umbrella House, Venice, California (Pugh + Scarpa), 3, 177–196
Solera, 54
Soleri, Paolo, 5
Solmetric SunEye, 12
SOMA Design, 11–12
Sorg, Suman, 61
Soriano, Alfonso, 2–3
Sorvig, Kim, 58
source location, materials selection, 21
Southface Energy Institute, 16, 26
special ordering, materials sources, 50
specifications
construction documents, 82
defined, 72
spot ventilation, 38
spray foam insulation materials, 53
stainless steel, 50
standards and certification, materials, 48–49
steel
materials selection, 52, 307
structural drawings, 82
Stelmack, Annette, 90
StoGuard, 55
straw bale construction, 52
structural composite lumber, materials, 52
structural drawings, working drawings, 81–82
structural engineer, construction documents, 75
structural insulated panels (SIPs), 22, 25, 36, 50, 51–52, 82, 138, 258
stucco, sustainable materials, 52
Studio 804, 9, 30, 313–329
sunspace, 41
supplementary conditions, defined, 73
surveyor, construction documents, 74
sustainability concept. See also
materials
celebrity culture, 89
client education, 10
corporations, 1
design process, 7, 9
ethics, 48
historical perspective, 1–5
interiors, 88–89
materials, 21, 43, 44, 45
systems approach, 31, 32–33
technology, 8
wood, 48
systems approach, 29–42
building envelope, 33–36
design process, 33
electrical loads, 38–39
energy efficiency and conservation, 31–32
historical perspective, 30–31
homeowner education, 32–33
HVAC, 36–38
indoor air quality, 39–40
overview, 29–30
passive solar design, 40–42
radon-resistance construction, 32, 40
renovations, 33
sustainability concept, 31
ventilation, 32
volatile organic compounds (VOCs), 40
water efficiency, 32
water heating, 38
wind, 42
systems compatibility, contractors, 20–21
technology
design process, 8
miscellaneous electrical loads, 39
systems approach, 29
Temple-Inland, 54
testing and certification, contractors, 27–28
thermal protection, specifications, 82
thermal storage system (TSS), 41, 143–144
THERMOMASS Building Insulation System, 52
thermoplastic composites, reinforced, 55
Thomas, Dylan, 1
Thompson, William, 58
Timberlake, James, 44, 47
Timberlake, Michelle, 85–97
tires, recycled, 51
toilets, water efficiency, 32
transportation, materials selection, 21
Trinity Apartments, Auckland, New Zealand (Patrick Clifford, Architectus), 161–176
triple-glazed glass, 54
2030 Challenge, 29–30, 49
Tyvek, Inc., 51
U-factor, building envelope, 34–35
UltraStock-MR, 54
ultraviolet (UV) rays
durability, 22
systems compatibility, 20
United States Department of Energy, 16, 17, 26–27, 29, 31, 33, 34, 49
United States Environmental Protection Agency (EPA), 26, 32, 33, 38, 39, 40, 49, 90
United States Green Building Council (USGBC), 16, 30, 33, 50
construction documents, 72
described, 26
interior design, 95
testing and certification, 27–28, 48
United States Life-Cycle Inventory National Data Base (LCI), 49
universal, cultural significance, materials, 45
universal space concept, Modernist principles, 2–3
upcycled materials, materials selection, 50–51
urethanes, water-based, 55
USA Today (newspaper), 89
Usonian Houses (Wright), 2, 89, 199
utility companies, active solar design, 42
UV rays
durability, 22
systems compatibility, 20
vacancy sensor lighting controls, 39
Van der Ryn, Sim, 2
James van Sweden Residence case study, 61–65
vapor retarder, moisture control, 40
ventilation. See also heating, ventilating, and air conditioning (HVAC) systems
HVAC systems, 38
passive solar design, 41
systems approach, 32
Victorian Age, 88
Vietnam Veterans Memorial (Washington, D.C.), 11
Villa Maria (Aalto), 2
vinyl siding, materials selection, 16
Viridis Lux, 89
Vogue magazine, 89
volatile organic compounds (VOCs)
health effects, 90, 91
interior design, 92
materials, 21, 44, 55, 303, 305, 309
spot ventilation, 38
systems approach, 40
wall sections
case study, 307
working drawings, 79
wall systems, materials, 51–52
Washington Post (newspaper), 113
waste
construction methods, 24
materials selection, 16, 51
water. See also hot water heating; humidity; moisture
case study, 308–309
costs, 25
durability, 22
energy efficiency and conservation, 29, 190
systems approach, 32, 38
water-based urethanes, 55
water infiltration, construction methods, 23
waterproofing, construction methods, 23
WaterSense program, 32
weather. See climate and climate zones
Weidman, 54
windows
building envelope, 34–35
contractors, 19–20
costs, 25
glazing system materials, 54
moisture control, 40
passive solar design, 41
window schedule, working drawings, 79, 80
wind systems, 42
wood
engineered wood, 52
structural composite lumber, 52
structural drawings, 82
sustainability, 48
working drawings
crafting of, 76–82
defined, 72
specifications, 82
World Health Organization (WHO), 90
World War I, 88
Wright, David, 5
Wright, Frank Lloyd, 1–2, 7, 43, 46, 51, 60, 88–89, 199, 239
Yanagis, Soetsu, 46
Yanagis, Sori, 46
Yancey Chapel (Auburn University students, Sawyerville, Alabama), 49–50, 51
Yeang, Ken, 6
Yoga Studio, Bluemont, Virginia (Jim Burton, Carter + Burton), 133–144
Yolocolorhouse, 48
Zamore, Brett, 253–269
Zamore Homes, 253–269
Zeta-Jones, Catherine, 89
zinc roofs, 53
For these and other Wiley books on sustainable design, visit www.wiley.com/go/sustainabledesign

Alternative Construction: Contemporary Natural Building Methods
by Lynne Elizabeth and Cassandra Adams

Biophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life
by Stephen R. Kellert, Judith Heerwagen, and Martin Mador

Contractor’s Guide to Green Building Construction: Management, Project Delivery, Documentation, and Risk Reduction
by Thomas E. Glavinich and Associated General Contractors

Design with Nature
by Ian L. McHarg

Ecodesign: A Manual for Ecological Design
by Ken Yeang

Environmentally Responsible Design: Green and Sustainable Design for Interior Designers
by Louise Jones

Green BIM: Successful Sustainable Design with Building Information Modeling
by Eddy Krygel and Brad Nies

by Ross Spiegel and Dru Meadows

by Susan Weiler and Katrin Scholz-Barth

The HOK Guidebook to Sustainable Design, Second Edition
by Sandra Mendler, William O’Dell, and Mary Ann Lazarus

The Integrative Design Guide to Green Building: Redefining the Practice of Sustainability
by 7group and Bill Reed

Land and Natural Development (Land) Code
by Diana Balmori and Gaboury Benoit

A Legal Guide to Urban and Sustainable Development for Planners, Developers and Architects
by Daniel Slone, Doris S. Goldstein, and W. Andrew Gowder

by Meg Calkins

Modern Sustainable Residential Design: A Guide for Design Professionals
by William J. Carpenter

Packaging Sustainability: Tools, Systems and Strategies for Innovative Package Design
by Wendy Jedlicka

Sustainable Commercial Interiors
by Penny Bonda and Katie Sosnowchik

Sustainable Construction: Green Building Design and Delivery, Second Edition
by Charles J. Kibert

Sustainable Design: Ecology, Architecture, and Planning
by Daniel Williams

Sustainable Design: The Science of Sustainability and Green Engineering
by Daniel Vallero and Chris Brasier

Sustainable Healthcare Architecture
by Robin Guenther and Gail Vittori

Sustainable Residential Interiors
by Associates III

Sustainable Urbanism: Urban Design With Nature
by Douglas Farr

ENVIRONMENTAL BENEFITS STATEMENT

This book is printed with soy-based inks on presses with VOC levels that are lower than the standard for the printing industry. The paper, Rolland Enviro 100, is manufactured by Cascades Fine Papers Group and is made from 100 percent post-consumer, de-inked fiber, without chlorine. According to the manufacturer, the use of every ton of Rolland Enviro100 Book paper, switched from virgin paper, helps the environment in the following ways:

<table>
<thead>
<tr>
<th>Mature trees</th>
<th>Waterborne waste not created</th>
<th>Waterflow saved</th>
<th>Atmospheric emissions eliminated</th>
<th>Solid Wastes reduced</th>
<th>Natural gas saved by using biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>6.9 lbs.</td>
<td>10,196 gals.</td>
<td>2,098 lbs.</td>
<td>1,081 lbs.</td>
<td>2,478 cubic feet</td>
</tr>
</tbody>
</table>