Contents

List of Contributors XIII
Preface XVII

Part I Basics and Methods 1

1 Introduction to Scanning Electron Microscopy 3
 Christina Scheu and Wayne D. Kaplan
 1.1 Components of the Scanning Electron Microscope 4
 1.1.1 Electron Guns 6
 1.1.2 Electromagnetic Lenses 9
 1.1.3 Deflection System 13
 1.1.4 Electron Detectors 13
 1.1.4.1 Everhart–Thornley Detector 13
 1.1.4.2 Scintillator Detector 15
 1.1.4.3 Solid-State Detector 16
 1.1.4.4 In-Lens or Through-the-Lens Detectors 16
 1.2 Electron–Matter Interaction 16
 1.2.1 Backscattered Electrons (BSEs) 20
 1.2.2 Secondary Electrons (SEs) 22
 1.2.3 Auger Electrons (AEs) 25
 1.2.4 Emission of Photons 25
 1.2.4.1 Emission of X-Rays 25
 1.2.4.2 Emission of Visible Light 26
 1.2.5 Interaction Volume and Resolution 26
 1.2.5.1 Secondary Electrons 27
 1.2.5.2 Backscattered Electrons 27
 1.2.5.3 X-Rays 27
 1.3 Contrast Mechanisms 28
 1.3.1 Topographic Contrast 28
 1.3.2 Composition Contrast 31
 1.3.3 Channeling Contrast 31
1.4 Electron Backscattered Diffraction (EBSD) 31
1.5 Dispersive X-Ray Spectroscopy 34
1.6 Other Signals 36
1.7 Summary 36
References 37

2 Conventional and Advanced Electron Transmission Microscopy 39
Christoph Koch
2.1 Introduction 39
2.1.1 Introductory Remarks 39
2.1.2 Instrumentation and Basic Electron Optics 40
2.1.3 Theory of Electron–Specimen Interaction 42
2.2 High-Resolution Transmission Electron Microscopy 48
2.3 Conventional TEM of Defects in Crystals 54
2.4 Lorentz Microscopy 55
2.5 Off-Axis and Inline Electron Holography 57
2.6 Electron Diffraction Techniques 59
2.6.1 Fundamentals of Electron Diffraction 59
2.7 Convergent Beam Electron Diffraction 61
2.7.1 Large-Angle Convergent Beam Electron Diffraction 63
2.7.2 Characterization of Amorphous Structures by Diffraction 63
2.8 Scanning Transmission Electron Microscopy and Z-Contrast 63
2.9 Analytical TEM 66
References 67

3 Dynamic Transmission Electron Microscopy 71
Thomas LaGrange, Bryan W. Reed, Wayne E. King, Judy S. Kim, and Geoffrey H. Campbell
3.1 Introduction 71
3.2 How Does Single-Shot DTEM Work? 72
3.2.1 Current Performance 74
3.2.2 Electron Sources and Optics 75
3.2.3 Arbitrary Waveform Generation Laser System 80
3.2.4 Acquiring High Time Resolution Movies 81
3.3 Experimental Applications of DTEM 82
3.3.1 Diffusionless First-Order Phase Transformations 82
3.3.2 Observing Transient Phenomena in Reactive Multilayer Foils 85
3.4 Crystallization Under Far-from-Equilibrium Conditions 88
3.5 Space Charge Effects in Single-Shot DTEM 90
3.5.1 Global Space Charge 90
3.5.2 Stochastic Blurring 91
3.6 Next-Generation DTEM 91
3.6.1 Novel Electron Sources 91
3.6.2 Relativistic Beams 92
3.6.3 Pulse Compression 93

References
4 Formation of Surface Patterns Observed with Reflection Electron Microscopy 99
Alexander V. Latyshev
4.1 Introduction 99
4.2 Reflection Electron Microscopy 102
4.3 Silicon Substrate Preparation 107
4.4 Monatomic Steps 109
4.5 Step Bunching 111
4.6 Surface Reconstructions 114
4.7 Epitaxial Growth 115
4.8 Thermal Oxygen Etching 116
4.9 Conclusions 119
References 119

Part II Growth and Interactions 123

5 Electron and Ion Irradiation 125
Florian Banhart
5.1 Introduction 125
5.2 The Physics of Irradiation 126
5.2.1 Scattering of Energetic Particles in Solids 126
5.2.2 Scattering of Electrons 128
5.2.3 Scattering of Ions 129
5.3 Radiation Defects in Solids 129
5.3.1 The Formation of Defects 129
5.3.2 The Migration of Defects 130
5.4 The Setup in the Electron Microscope 131
5.4.1 Electron Irradiation 131
5.4.2 Ion Irradiation 132
5.5 Experiments 132
5.5.1 Electron Irradiation 133
5.5.2 Ion Irradiation 140
5.6 Outlook 141
References 142

6 Observing Chemical Reactions Using Transmission Electron Microscopy 145
Renu Sharma
6.1 Introduction 145
6.2 Instrumentation 146
6.3 Types of Chemical Reaction Suitable for TEM Observation 150
6.3.1 Oxidation and Reduction (Redox) Reactions 150
6.3.2 Phase Transformations 151
6.3.3 Polymerization 151
6.3.4 Nitridation 152
6.3.5 Hydroxylation and Dehydroxylation 152
6.3.6 Nucleation and Growth of Nanostructures 153

6.4 Experimental Setup 154
6.4.1 Reaction of Ambient Environment with Various TEM Components 154
6.4.2 Reaction of Grid/Support Materials with the Sample or with Each Other 154
6.4.3 Temperature and Pressure Considerations 155
6.4.4 Selecting Appropriate Characterization Technique(s) 156
6.4.5 Recording Media 156
6.4.6 Independent Verification of the Results, and the Effects of the Electron Beam 157

6.5 Available Information Under Reaction Conditions 157
6.5.1 Structural Modification 158
6.5.1.1 Electron Diffraction 158
6.5.1.2 High-Resolution Imaging 158
6.5.2 Chemical Changes 161
6.5.3 Reaction Rates (Kinetics) 164

6.6 Limitations and Future Developments 164

References 165

7
In-Situ TEM Studies of Vapor- and Liquid-Phase Crystal Growth 171
Frances M. Ross

7.1 Introduction 171
7.2 Experimental Considerations 172
7.2.1 What Crystal Growth Experiments are Possible? 172
7.2.2 How Can These Experiments be Made Quantitative? 173
7.2.3 How Relevant Can These Experiments Be? 175
7.3 Vapor-Phase Growth Processes 175
7.3.1 Quantum Dot Growth Kinetics 176
7.3.2 Vapor–Liquid–Solid Growth of Nanowires 177
7.3.3 Nucleation Kinetics in Nanostructures 180
7.4 Liquid-Phase Growth Processes 183
7.4.1 Observing Liquid Samples Using TEM 183
7.4.2 Electrochemical Nucleation and Growth in the TEM System 184
7.5 Summary 187

References 188

8
In-Situ TEM Studies of Oxidation 191
Guangwen Zhou and Judith C. Yang

8.1 Introduction 191
8.2 Experimental Approach 192
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1 Environmental Cells</td>
<td>192</td>
</tr>
<tr>
<td>8.2.2 Surface and Environmental Conditions</td>
<td>193</td>
</tr>
<tr>
<td>8.2.3 Gas-Handling System</td>
<td>194</td>
</tr>
<tr>
<td>8.2.4 Limitations</td>
<td>195</td>
</tr>
<tr>
<td>8.3 Oxidation Phenomena</td>
<td>196</td>
</tr>
<tr>
<td>8.3.1 Surface Reconstruction</td>
<td>196</td>
</tr>
<tr>
<td>8.3.2 Nucleation and Initial Oxide Growth</td>
<td>197</td>
</tr>
<tr>
<td>8.3.3 Role of Surface Defects on Surface Oxidation</td>
<td>198</td>
</tr>
<tr>
<td>8.3.4 Shape Transition During Oxide Growth in Alloy Oxidation</td>
<td>199</td>
</tr>
<tr>
<td>8.3.5 Effect of Oxygen Pressure on the Orientations of Oxide Nuclei</td>
<td>202</td>
</tr>
<tr>
<td>8.3.6 Oxidation Pathways Revealed by High-Resolution TEM Studies of Oxidation</td>
<td>203</td>
</tr>
<tr>
<td>8.4 Future Developments</td>
<td>205</td>
</tr>
<tr>
<td>8.5 Summary</td>
<td>206</td>
</tr>
</tbody>
</table>

Part III Mechanical Properties 209

9 Mechanical Testing with the Scanning Electron Microscope 211

Christian Motz

9.1 Introduction 211

9.2 Technical Requirements and Specimen Preparation 212

9.3 **In-Situ** Loading of Macroscopic Samples 214

9.3.1 Static Loading in Tension, Compression, and Bending 214

9.3.2 Dynamic Loading in Tension, Compression, and Bending 216

9.3.3 Applications of **In-Situ** Testing 216

9.4 **In-Situ** Loading of Micron-Sized Samples 217

9.4.1 Static Loading of Micron-Sized Samples in Tension, Compression,
and Bending 218

9.4.2 Applications of **In-Situ** Testing of Small-Scale Samples 220

9.4.3 **In-Situ** Microindentation and Nanoindentation 222

9.5 Summary and Outlook 223

References 223

10 **In-Situ** TEM Straining Experiments: Recent Progress in Stages
and Small-Scale Mechanics 227

Gerhard Dehm, Marc Legros, and Daniel Kiener

10.1 Introduction 227

10.2 Available Straining Techniques 228

10.2.1 Thermal Straining 228

10.2.2 Mechanical Straining 229

10.2.3 Instrumented Stages and MEMS/NEMS Devices 230

10.3 Dislocation Mechanisms in Thermally Strained Metallic Films 233

10.3.1 Basic Concepts 233

10.3.2 Dislocation Motion in Single Crystalline Films and Near Interfaces 235
10.3.3 Dislocation Nucleation and Multiplication in Thin Films 236
10.3.4 Diffusion-Induced Dislocation Plasticity in Polycrystalline Cu Films 239
10.4 Size-Dependent Dislocation Plasticity in Metals 239
10.4.1 Plasticity in Geometrically Confined Single Crystal fcc Metals 241
10.4.2 Size-Dependent Transitions in Dislocation Plasticity 243
10.4.3 Plasticity by Motion of Grain Boundaries 244
10.4.4 Influence of Grain Size Heterogeneities 245
10.5 Conclusions and Future Directions 247
References 248

11 In-Situ Nanoindentation in the Transmission Electron Microscope 255
Andrew M. Minor
11.1 Introduction 255
11.1.1 The Evolution of In-Situ Mechanical Probing in a TEM 255
11.1.2 Introduction to Nanoindentation 256
11.2 Experimental Methodology 260
11.3 Example Studies 263
11.3.1 In-Situ TEM Nanoindentation of Silicon 263
11.3.2 In-Situ TEM Nanoindentation of Al Thin Films 269
11.4 Conclusions 272
References 274

Part IV Physical Properties 279

12 Current-Induced Transport: Electromigration 281
Ralph Spolenak
12.1 Principles 281
12.2 Transmission Electron Microscopy 283
12.2.1 Imaging 283
12.2.2 Diffraction 288
12.2.3 Convergent Beam Electron Diffraction (CBED): Measurements of Elastic Strain 288
12.3 Secondary Electron Microscopy 289
12.3.1 Imaging 289
12.3.2 Elemental Analysis 291
12.3.3 Electron Backscatter Diffraction (EBSD) 292
12.4 X-Radiography Studies 292
12.4.1 Microscopy and Tomography 292
12.4.2 Spectroscopy 293
12.4.3 Topography 294
12.4.4 Microdiffraction 294
12.5 Specialized Techniques 295
12.5.1 Focused Ion Beams 295
12.5.2 Reflective High-Energy Electron Diffraction (RHEED) 296
12.5.3 Scanning Probe Methods 296
12.6 Comparison of In-Situ Methods 297
References 299

13 Cathodoluminescence in Scanning and Transmission Electron Microscopies 303
Yutaka Ohno and Seiji Takeda

13.1 Introduction 303
13.2 Principles of Cathodoluminescence 304
13.2.1 The Generation and Recombination of Electron-Hole Pairs 304
13.2.2 Characteristic of CL Spectroscopy 305
13.2.3 CL Imaging and Contrast Analysis 306
13.2.4 Spatial Resolution of CL Imaging and Spectroscopy 306
13.2.5 CL Detection Systems 307
13.3 Applications of CL in Scanning and Transmission Electron Microscopies 307
13.3.1 Assessments of Group III–V Compounds 308
13.3.1.1 Nitrides 308
13.3.1.2 III–V Compounds Except Nitrides 309
13.3.2 Group II–VI Compounds and Related Materials 310
13.3.2.1 Oxides 310
13.3.2.2 Group II–VI Compounds, Except Oxides 312
13.3.3 Group IV and Related Materials 313
13.4 Concluding Remarks 313
References 313

14 In-Situ TEM with Electrical Bias on Ferroelectric Oxides 321
Xiaoli Tan

14.1 Introduction 321
14.2 Experimental Details 323
14.3 Domain Polarization Switching 324
14.4 Grain Boundary Cavitation 326
14.5 Domain Wall Fracture 331
14.6 Antiferroelectric-to-Ferroelectric Phase Transition 335
14.7 Relaxor-to-Ferroelectric Phase Transition 341
References 345

15 Lorentz Microscopy 347
Josef Zweck

15.1 Introduction 347
15.2 The In-Situ Creation of Magnetic Fields 350
15.2.1 Combining the Objective Lens Field with Specimen Tilt 351
15.2.2 Magnetizing Stages Using Coils and Pole-Pieces 352
15.2.3 Magnetizing Stages Without Coils 356