Contents

Preface xv

1 Introduction
1.1 Overview 1
1.2 Decoding Complexity in Chemical Kinetics 2
1.3 Three Types of Chemical Kinetics 3
1.3.1 Applied Kinetics 3
1.3.2 Detailed Kinetics 3
1.3.3 Mathematical Kinetics 4
1.4 Challenges and Goals. How to Kill Chemical Complexity 4
1.4.1 “Gray-Box” Approach 4
1.4.2 Analysis of Kinetic Fingerprints 5
1.4.3 Non-Steady-State Kinetic Screening 6
1.5 What Our Book Is Not About. Our Book among Other Books on Chemical Kinetics 6
1.6 The Logic in the Reasoning of This Book 7
1.7 How Chemical Kinetics and Mathematics Are Interwoven in This Book 7
1.8 History of Chemical Kinetics 8

2 Chemical Reactions and Complexity 17
2.1 Introduction 17
2.2 Elementary Reactions and the Mass-Action Law 19
2.2.1 Homogeneous Reactions 19
2.2.2 Heterogeneous Reactions 21
2.2.3 Rate Expressions 22
2.3 The Reaction Rate and Net Rate of Production of a Component – A Big Difference 23
2.4 Dimension of the Kinetic Parameters and Their Order of Magnitude 25
3.7.3 Theoretical Diagnostics 56
3.7.3.1 External Mass-Transfer 57
3.7.3.2 External Heat-Transfer 59
3.7.3.3 Internal Mass Transport 60
3.7.3.4 Internal Heat Transport 64
3.7.3.5 Non-Steady-State Operation 64
Notation 65

4 Chemical Book-Keeping: Linear Algebra in Chemical Kinetics 69
4.1 Basic Elements of Linear Algebra 69
4.2 Linear Algebra and Complexity of Chemical Reactions 71
4.2.1 Atomic Composition of Components: Molecules “Consist of” Atoms 72
4.2.1.1 Molecular Matrix 72
4.2.1.2 Linear Algebra and Laws of Mass Conservation 72
4.2.1.3 Key Components and Their Number 74
4.2.2 Stoichiometry of Chemical Reactions: Reactions “Consist of” Chemical Components 76
4.2.2.1 Stoichiometric Matrix 76
4.2.2.2 Similarity and Difference between the Conservation Law for Chemical Elements and the Kinetic Mass-Conservation Law 79
4.2.2.3 Similarity and Difference between the Number of Key Components and the Number of Key Reactions 79
4.2.3 Detailed Mechanism of Complex Reactions: Complex Reactions “Consist of” Elementary Reactions 79
4.2.3.1 Mechanisms and Horiuti Numbers 79
4.2.3.2 Matrices and Independent Routes of Complex Reactions 86
4.3 Conclusions 89
Notation 89

5 Steady-State Chemical Kinetics: A Primer 93
5.1 Introduction to Graph Theory 93
5.2 Representation of Complex Mechanisms as Graphs 94
5.2.1 Single-Route Mechanisms 95
5.2.2 Single-Route Mechanism with a Buffer Step 97
5.2.3 Two-Route Mechanisms 98
5.2.4 Number of Independent Cycles and Horiuti’s Rule 100
5.3 How to Derive the Reaction Rate for a Complex Reaction 104
5.3.1 Introduction 104
5.3.2 Kinetic Cramer’s Rule and Trees of the Chemical Graph 104
Contents

5.3.3 Forward and Reverse Reaction Rates 111
5.3.4 Single-Route Linear Mechanism – General Case 113
5.3.5 How to Find the Kinetic Equation for the Reverse Reaction: The Horiuti–Boreskov Problem 114
5.3.6 What about the Overall Reaction – A Provocative Opinion 116
5.4 Derivation of Steady-State Kinetic Equations for a Single-Route Mechanism – Examples 118
5.4.1 Two-Step Mechanisms 119
5.4.1.1 Michaelis–Menten Mechanism 119
5.4.1.2 Water–Gas Shift Reaction 120
5.4.2 Three-Step Mechanisms 122
5.4.2.1 Oxidation of SO$_2$ 122
5.4.2.2 Coupling Reaction 123
5.4.3 Four-Step Mechanisms 124
5.4.4 Five-Step Mechanisms 126
5.4.5 Single-Route Linear Mechanisms with a Buffer Step 127
5.5 Derivation of Steady-State Kinetic Equations for Multi-route Mechanisms: Kinetic Coupling 129
5.5.1 Cycles Having a Common Intermediate 131
5.5.2 Cycles Having a Common Step 132
5.5.3 Cycles Having Two Common Steps 134
5.5.4 Different Types of Coupling between Cycles 134
Notation 135

6 Steady-State Chemical Kinetics: Machinery 139
6.1 Analysis of Rate Equations 139
6.1.1 Parameters: Dependence on Temperature and Number of Identifiable Parameters 139
6.1.2 Simplifying Assumptions 142
6.1.2.1 Fast Step 142
6.1.2.2 Rate-Limiting Step 143
6.1.2.3 Quasi-Equilibrated Steps 144
6.1.2.4 Irreversible Step(s) 145
6.1.2.5 Dependence of the Reaction Rate on Concentrations 146
6.2 Apparent Kinetic Parameters: Reaction Order and Activation Energy 147
6.2.1 Definitions 147
6.2.2 Two-Step Mechanism of an Irreversible Reaction 148
6.2.2.1 Apparent Partial Reaction Order 148
6.2.2.2 Apparent Activation Energy 150
6.2.3 More Complicated Cases 150
6.2.3.1 Apparent Partial Reaction Order 151
6.2.3.2 Apparent Activation Energy 157
6.2.4 Some Further Comments 158
6.3 How to Reveal Mechanisms Based on Steady-State Kinetic Data 158
6.3.1 Assumptions 158
6.3.2 Direct and Inverse Problems of Kinetic Modeling 160
6.3.3 Minimal and Non-minimal Mechanisms 160
6.3.3.1 Two-Step Catalytic Mechanisms 161
6.3.3.2 Three-Step Catalytic Mechanisms 161
6.3.3.3 Four-Step Catalytic Mechanisms 163
6.3.3.4 Five-Step Catalytic Mechanisms 163
6.3.3.5 Summary 163
6.3.4 What Kind of Kinetic Model Do We Need to Describe Steady-State Kinetic Data and for Decoding Mechanisms? 164
6.3.4.1 Kinetic Resistance 164
6.3.4.2 Analysis of the Kinetic Resistance in Identifying and Decoding Mechanisms and Models 165
6.3.4.3 Concentration Terms of the Kinetic Resistance and the Structure of the Detailed Mechanism 166
6.3.4.4 Principle of Component Segregation 170
6.4 Conclusions 171
Notation 171

7 Linear and Nonlinear Relaxation. Stability 175
7.1 Introduction 175
7.1.1 Linear Relaxation 177
7.1.2 Relaxation Times and Steady-State Reaction Rate 179
7.1.2.1 Relaxation Times and Kinetic Resistance 179
7.1.2.2 Temkin’s Rule. Is It Valid? 181
7.1.3 Further Comments 183
7.2 Relaxation in a Closed System 183
7.2.1 Principle of Detailed Equilibrium 183
7.3 Stability – General Concept 187
7.3.1 Elements of the Qualitative Theory of Differential Equations 187
7.3.2 Local Stability – Rigorous Definition 190
7.3.3 Local Stability – System with Two Variables 191
7.3.3.1 Real Roots 193
7.3.3.2 Imaginary Roots 194
7.3.4 Analysis of Global Dynamics 195
7.4 Simplifications of Non-Steady-State Models 197
7.4.1 Abundance and Linearization 197
7.4.2 Fast Step – Equilibrium Approximation 198
8 Nonlinear Mechanisms: Steady State and Dynamics 211
8.1 Critical Phenomena 211
8.2 Isothermal Critical Effects in Heterogeneous Catalysis: Experimental Facts 213
8.2.1 Multiplicity of Steady States 213
8.2.2 Self-Sustained Oscillations of the Reaction Rate in Heterogeneous Catalytic Reactions 215
8.2.3 Diversity of Critical Phenomena and Their Causes 216
8.3 Ideal Simple Models: Steady State 217
8.3.1 Parallel and Consecutive Adsorption Mechanisms 217
8.3.2 Impact Mechanisms 218
8.3.3 Simplest Mechanism for the Interpretation of Multiplicity of Steady States 221
8.3.4 Hysteresis: Influence of Reaction Reversibility 227
8.3.5 Competition of Intermediates 233
8.4 Ideal Simple Models: Dynamics 237
8.4.1 Relaxation Characteristics of the Parallel Adsorption Mechanism 237
8.4.2 Catalytic Oscillators 244
8.4.2.1 Simplest Catalytic Oscillator 244
8.4.2.2 Relaxation of Self-Sustained Oscillations: Model 250
8.4.2.3 Other Catalytic Oscillators 250
8.4.3 Fine Structure of Kinetic Dependences 254
8.5 Structure of the Detailed Mechanism and Critical Phenomena: Relationships 256
8.5.1 Mechanisms without Interaction between Intermediates 256
8.5.2 Horn–Jackson–Feinberg Mechanism 258
8.6 Non-Ideal Factors 262
8.7 Conclusions 263
Notation 263

9 Kinetic Polynomials 273
9.1 “Linear” Introduction to the Nonlinear Problem: Reminder 273
9.2 “Nonlinear” Introduction 276
9.3 Principles of the Approach: Quasi-Steady-State Approximation. Mathematical Basis 278
9.3.1 Introduction 278
9.3.2 Examples 279
9.4 Kinetic Polynomials: Derivation and Properties 281
9.4.1 Resultant Reaction Rate: A Necessary Mathematical Basis 281
9.4.2 Properties of the Kinetic Polynomial 283
9.4.3 Examples of Kinetic Polynomials 285
9.4.3.1 Eley–Rideal Mechanism 285
9.4.3.2 Langmuir Mechanism 286
9.5 Kinetic Polynomial: Classical Approximations and Simplifications 287
9.5.1 Rate-Limiting Step 288
9.5.2 Vicinity of Thermodynamic Equilibrium 290
9.5.3 Thermodynamic Branch 291
9.6 Application of Results of the Kinetic-Polynomial Theory: Cycles across an Equilibrium 294
9.7 Critical Simplification 301
9.7.1 Critical Simplification: A Simple Example 301
9.7.2 Critical Simplification and Limitation 308
9.7.3 Principle of Critical Simplification: General Understanding and Application 309
9.8 Concluding Remarks 310
Appendix 310
Notation 312

10 Temporal Analysis of Products: Principles, Applications and Theory 319
10.1 Introduction 319
10.2 The TAP Experiment 321
10.3 Description and Operation of a TAP Reactor System 322
10.4 Basic Principles of TAP 324
10.5 Position of TAP among Other Kinetic Methods 326
10.5.1 Uniformity of the Active Zone 327
10.5.1.1 Continuous Stirred-Tank Reactor 327
10.5.1.2 Plug-Flow Reactor 327
10.5.1.3 TAP Reactor 327
10.5.2 Domain of Conditions 327
10.5.3 Possibility of Obtaining Relevant Kinetic Information 328
10.5.4 Relationship between Observed Kinetic Characteristics and Catalyst Properties 328
10.5.5 Model-Free Kinetic Data Interpretation 329
10.5.6 Summary 330
10.6 Qualitative TAP Data Analysis. Examples 332
10.6.1 Single-Pulse TAP Experiments 332
10.6.2 Pump–Probe TAP Experiments 333
10.6.3 Multipulse TAP Experiments 336
10.7 Quantitative TAP Data Description. Theoretical Analysis
10.7.1 One-Zone Reactor
10.7.1.1 Diffusion Only
10.7.1.2 Irreversible Adsorption
10.7.1.3 Reversible Adsorption
10.7.2 Two- and Three-Zone Reactors
10.7.3 Thin-Zone TAP Reactor Configuration
10.7.4 Moment-Based Quantitative Description of TAP Experiments
10.8 Kinetic Monitoring: Strategy of Interrogative Kinetics
10.8.1 State-by-State Kinetic Monitoring. Example: Oxidation of Furan
10.8.2 Strategy of Interrogative Kinetics
10.9 Theoretical Frontiers
10.9.1 Global Transfer Matrix Equation
10.9.2 Y Procedure
10.9.2.1 Principles of the Solution
10.9.2.2 Exact Mathematical Solution
10.9.2.3 How to Reconstruct the Active Zone Concentration and Reaction Rate in Practice
10.9.2.4 Numerical Experiments
10.9.2.5 Summary of the Y Procedure
10.9.3 Probabilistic Theory of Single-Particle TAP Experiments
10.10 Conclusions: What Next?
Notations

11 Decoding the Past
11.1 Chemical Time and Intermediates. Early History
11.2 Discovery of Catalysis and Chemical Kinetics
11.3 Guldberg and Waage’s Breakthrough
11.4 Van’t Hoff’s Revolution: Achievements and Contradictions
11.4.1 Undisputable Achievements
11.4.2 Contradictions
11.5 Post-Van’t Hoff Period: Reaction Is Not a Single-Act Drama
11.6 All-in-All Confusion: Attempts at Understanding
11.7 Out of Confusion: Physicochemical Understanding
11.8 Towards Mathematical Chemical Kinetics
Notation
Contents

12 **Decoding the Future** 401
12.1 A Great Achievement, A Great Illusion 401
12.2 A New Paradigm for Decoding Chemical Complexity 402
12.2.1 Advanced Experimental Kinetic Tools 403
12.2.2 New Mathematical Tools: Chemical Kinetics and Mathematics 405

Glossary 409
Index 415