Table of Contents

Preface
XV

General introduction
XVII

List of Authors
XXI

1 Purification Principles in High-Speed Solution-Phase Synthesis
1
Steffen Weinbrenner and C. Christoph Tzschucke

1.1 Introduction
1

1.2 Liquid-Liquid Extraction
2

1.2.1 Aqueous Work-Up
2

1.2.2 Phase-Separation Techniques
6

1.2.3 Fluorous Biphasic Systems
6

1.2.4 Ionic Liquids
9

1.3 Solid-Phase Extraction
10

1.3.1 Silica Gel and Alumina
10

1.3.2 Fluorous Silica Gel
11

1.3.3 Ion Exchange
14

1.4 Covalent Scavengers
19

1.4.1 Solution Scavengers
19

1.5 Polymer-Assisted Solution-Phase Chemistry (PASP)
21

1.5.1 Scavenger Resins
21

1.5.2 Resin Capture
24

1.6 Complex Purification Strategies
26

1.7 Conclusion and Outlook
29

References
29

2 Linkers for Solid-Phase Organic Synthesis (SPOS) and Combinatorial Approaches on Solid Supports
33
Willi Bannwarth

2.1 General
33

2.2 Linkers for Functional Groups
34

2.2.1 Linkers for Carboxyl Functions
34

2.2.2 Linkers for Amino Functions
36

2.2.2.1 Linkers Based on Benzylxycarbonyl (Z)
36
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2.2 Linker Based on tert-Butyloxycarbonyl (Boc)</td>
<td>40</td>
</tr>
<tr>
<td>2.2.2.3 A Urethane Linker Cleavable by Fluoride Ions</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2.4 Benzyl-Linked Approaches for Secondary Amines</td>
<td>42</td>
</tr>
<tr>
<td>2.2.2.5 Linkers Based on Acetyldimedone</td>
<td>44</td>
</tr>
<tr>
<td>2.2.2.6 Trityl Linker</td>
<td>46</td>
</tr>
<tr>
<td>2.2.3 Linkers for the Attachment of Alcohols or Phenols</td>
<td>50</td>
</tr>
<tr>
<td>2.2.3.1 Linker Based on the Tetrahydropyranyl (THP) Group</td>
<td>50</td>
</tr>
<tr>
<td>2.2.3.2 Silyl Linker for the Attachment of Alcohols</td>
<td>53</td>
</tr>
<tr>
<td>2.2.3.3 Miscellaneous Linkers for Alcohols</td>
<td>56</td>
</tr>
<tr>
<td>2.2.3.4 Serine-Based Linker for Phenols</td>
<td>57</td>
</tr>
<tr>
<td>2.2.3.5 Carboxy-Functionalized Resins for the Attachment of Phenols</td>
<td>58</td>
</tr>
<tr>
<td>2.2.4 Acetal Linker for the Preparation of Aldehydes</td>
<td>58</td>
</tr>
<tr>
<td>2.3 Traceless Linker Systems</td>
<td>61</td>
</tr>
<tr>
<td>2.3.1 Application of Hofmann Elimination in Linker Design</td>
<td>61</td>
</tr>
<tr>
<td>2.3.2 Traceless Linkers Based on Silyl Functionalization</td>
<td>64</td>
</tr>
<tr>
<td>2.3.3 Traceless Linkers Based on C–C Coupling Strategies</td>
<td>68</td>
</tr>
<tr>
<td>2.3.4 Traceless Linkers Based on π-Complexation</td>
<td>71</td>
</tr>
<tr>
<td>2.3.5 Traceless Linkers Based on Olefin Metathesis</td>
<td>71</td>
</tr>
<tr>
<td>2.3.6 Traceless Synthesis Using Polymer-Bound Triphenylphosphine</td>
<td>78</td>
</tr>
<tr>
<td>2.3.7 Decarboxylation-Based Traceless Linking</td>
<td>80</td>
</tr>
<tr>
<td>2.3.8 Traceless Linker Based on Aryl Hydrazides</td>
<td>81</td>
</tr>
<tr>
<td>2.3.9 Triazene-Based Traceless Linker</td>
<td>83</td>
</tr>
<tr>
<td>2.3.10 Traceless Linker Based on Sulfones</td>
<td>85</td>
</tr>
<tr>
<td>2.3.11 Traceless Concept Based on Cycloaddition-Cycloreversion</td>
<td>85</td>
</tr>
<tr>
<td>2.4 Photolabile Linker Units</td>
<td>89</td>
</tr>
<tr>
<td>2.4.1 Introduction</td>
<td>89</td>
</tr>
<tr>
<td>2.4.2 Linkers Based on o-Nitrobenzyl</td>
<td>89</td>
</tr>
<tr>
<td>2.4.3 Photocleavable Linker Based on Pivaloyl Glycol</td>
<td>91</td>
</tr>
<tr>
<td>2.5 Safety-Catch Linkers</td>
<td>93</td>
</tr>
<tr>
<td>2.6 Dual Linkers and Analytical Constructs</td>
<td>101</td>
</tr>
<tr>
<td>2.7 Summary and Outlook</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
</tbody>
</table>

3 Cyclative Cleavage: A Versatile Concept in Solid-Phase Organic Chemistry

Josef Pernerstorfer

3.1 Principles

3.2 Carbon-Heteroatom Bond Formation

3.2.1 Hydantoins

3.2.2 Pyrazolones

3.2.3 2-Aminoimidazolones

3.2.4 Urazoles and Thiourazoles

3.2.5 Oxazolidinones

3.2.6 Diketopiperazine Derivatives

3.2.7 4,5-Dihydro-3(2H)-pyridazinones
3.2.8 Dihydropyridines 124
3.2.9 5,6-Dihydropyrimidine-2,4-diones 125
3.2.10 2,4-(1H,3H)-Quinazolinediones 126
3.2.11 Quinazolin-4(3H)-ones 126
3.2.12 4-Hydroxyquinolin-2(1H)-ones 128
3.2.13 3,4-Dihydroquinoxalin-2-ones 128
3.2.14 1,4-Benzodiazipine-2,5-diones 129
3.2.15 Oxacephams 129
3.2.16 Lactones 130
3.2.17 Tetrahydrofurans 133
3.3 Formation of C–C Bonds 133
3.3.1 Tetramic Acids 133
3.3.2 Wittig-Type Reactions 134
3.3.3 Stille Reactions 136
3.3.4 S-Ylides 137
3.3.5 Ring-Closing Metathesis 137
3.4 Miscellaneous 137
3.4.1 Furans 138
3.4.2 Phenols 138
3.5 Summary 140

References 140

4 C–C Bond-Forming Reactions 143
Wolfgang K.-D. Brill and Gianluca Papeo
4.1 General 143
4.2 Transition Metal-Mediated Vinylations, Arylations, and Alkylations 143
4.2.1 The Suzuki Coupling 144
4.2.2 The Heck Reaction 159
4.2.3 The Sonogashira Coupling 164
4.2.4 The Stille Coupling 172
4.2.5 Remarks on Pd-mediated Couplings on a Polymeric Support 174
4.2.6 Experimental Approach 175
4.2.6.1 Materials and Methods 175
4.3 Miscellaneous Aryl-Aryl Couplings 189
4.3.1 Ullmann/Wurz Coupling on a Polymeric Support 189
4.3.2 Intermolecular Alkyl-Alkyl Coupling 190
4.3.3 Negishi Couplings 192
4.4 Alkene Metathesis Reactions 193
4.4.1 Ring-Closing Metathesis (RCM) Reactions 195
4.4.2 Cross-Metathesis (CM) Reactions 199
4.5 Cycloaddition Reactions on a Polymeric Support 200
4.5.1 C1 Fragments (Additions of Carbenes to Alkenes) 201
4.5.2 Electron-Deficient C2 Fragments (Cycloadditions Involving Azomethines, Nitrones, Nitrile Oxides, and Dienes) 207
4.5.3 Electron-Rich C2 Fragments ([2 + 1], [2 + 2], [2 + 3], [2 + 4]-Cycloadditions, Additions with Nitrile Imines, Nitrile Oxides, and Chalcones) 216

4.5.4 C–X Fragment on Solid Support 224

4.5.5 C–C–X Fragments on the Polymeric Support 229

4.5.6 C–X–C Fragment 233

4.5.7 C–X–Y-Fragment (Nitrile Oxide on Solid Phase) 235

4.5.8 C–C–C–C Fragments on Solid Phase 237

4.5.9 C–C–C–X Fragments on Solid Support 252

4.5.10 C–C–X–C Fragment on Solid Support (Grieco Three-Component Condensation) 254

4.5.11 C–X–X–C Fragment on Solid Support 255

4.5.12 C–C–X–X Fragment on Solid Support ([4 + 1]-Cycloaddition) 257

4.5.13 Cycloadditions Involving Larger Support-Bound Fragments: Intramolecular Hetero Diels-Alder 257

4.5.14 Pauson-Khand and Nicolas Reaction 260

4.5.15 C-Nitroalkene Additions 263

4.6 Multicomponent Reactions (MCRs) 263

4.6.1 Ugi Four-Component Reaction 264

4.6.1.1 Ugi Reaction with Solid-Supported Isonitriles 264

4.6.1.2 Ugi reaction with Solid-Supported Amines 267

4.6.1.3 Ugi Reaction with Solid-Supported Carboxylic Acid 269

4.6.1.4 Derivatization of Boronic Acids 270

4.6.2 Other MCRs Using Isonitriles 271

4.6.2.1 Petasis (Borono-Mannich) Condensation 271

4.6.2.2 Imidazo[1,2-α]pyridines 272

4.6.2.3 Biginelli Dihydropyrimidines Synthesis 273

4.6.2.4 Thiophene Synthesis 275

4.6.2.5 Tetrahydropyridones 276

4.6.2.6 Cyclization 278

4.6.2.7 Cleavage 278

4.7 Electrophiles Bound to the Polymeric Support 278

4.7.1 Reactions with Organyls of Zn, Mg, Li 278

4.7.1.1 Reactions Involving Grignard Reagents, Organothiium, and Organozinc Reagents 279

4.7.1.2 Reactions with Water-Sensitive Reagents such as Grignard Reagents, Lithium Alkyls, or Zinc Organyls [375] on Solid Phases 279

4.7.2 Indium-Mediated Allylation of Support-Bound Aldehydes 282

4.7.3 Sn/Pd-Mediated C-Allylation of Solid-Phase-Bound Aldehydes 284

4.7.4 Metal-free Alkylations by Acyl Halides on Polymeric Supports 286

4.7.5 Nucleophilic Aromatic Substitution with C-Nucleophiles 286

4.7.6 Pyridine-N-Oxides 289

4.7.7 Trapping Phosphorus Ylides with a Ketone Bound to the Solid Phase 289
4.7.8 Michael Acceptor on Solid Phase (Route to 3,4,6-Trisubstituted Pyrid-2-ones) 290
4.7.9 Solid phase N-Acyliminium Ions, Imines and Glyoxylate Chemistry 291
4.7.10 Solid-Supported Imines and Glyoxylate 294
4.7.11 Solid-Phase Pictet-Spengler Reactions 299
4.7.12 Solid-Phase Baylis-Hillman Reaction 307
4.7.13 Solid-Phase Fischer Indole Synthesis 310
4.7.14 Solid-Phase Madelung Indole Synthesis 311
4.7.15 Boron Enolates with Support-Bound Aldehydes 312
4.7.16 Summary of Solid-Supported Electrophiles 314
4.8 Generation of Carbanions on Solid Supports 314
4.8.1 Transition Metal-Mediated Carbanion Equivalent Formations 320
4.8.2 Lewis Acid-Mediated Electrophilic Substitutions 321
4.8.3 Generation of Stabilized Carbanions Under Basic Conditions 327
4.8.4 Experimental Approach 334
4.8.5 Stereoselective Alkylations on a Chiral Solid Phase 340
4.9 Solid-Phase Radical Reactions 340
4.10 Outlook 347
5 Combinatorial Synthesis of Heterocycles 361
 Eduard R. Felder and Andreas L. Marzinik
5.1 Introduction 361
5.2 Benzodiazepines 363
5.3 Hydantoins and Thiohydantoins 369
5.4 \(\beta\)-Lactams (Azetidin-2-ones) 375
5.5 \(\beta\)-Sultams 376
5.6 Imidazoles 379
5.7 Pyrazoles and Isoxazoles 384
5.8 Thiazolidinones 387
5.9 Triazoles 390
5.10 Oxadiazoles 396
5.10.1 1,2,4-Oxadiazoles 397
5.10.2 1,3,4-Oxadiazoles 399
5.11 Piperazinones 401
5.12 Piperazinediones (Diketopiperazines) 406
5.12.1 Diketopiperazines via Backbone Amide Linker (BAL) [117] 406
5.12.2 Piperazinediones by Acid Cyclative Cleavage; Method A, including Reductive Alkylation 409
5.12.3 Piperazinediones by Acid Cyclative Cleavage; Method B, including \(S_n2\) Displacement 410
5.13 Diketomorpholines 413
5.14 Triazines 413
5.15 Pyrimidines 417
5.16 Indoles 421
5.17 Quinazolines 428
5.18 Benzopiperazinones and Tetrahydroquinoxalines 439
5.19 Tetrahydro-β-carbolines 443
5.20 Outlook 449
References 449

6 Polymer-Supported Reagents: Preparation and Use in Parallel Organic Synthesis 457
Berthold Hinzen and Michael G. Hahn
6.1 Introduction 457
6.2 Preparation and Use of PSRs 459
6.2.1 Covalent Linkage Between the Active Species and Support 459
6.2.1.1 PSRs Prepared by Solid-Phase Chemistry 459
6.2.1.2 PSRs Prepared by Polymerization 483
6.2.2 Immobilization Using Ionic Interactions 490
6.2.2.1 Oxidants 490
6.2.2.2 Reducing Agents 492
6.2.2.3 Alkoxides Bound to a Polymer Support 494
6.2.2.4 Horner-Emmons Reagents on Supports 494
6.2.2.5 Halogenating Agents 495
6.3 Support-Bound Sequestering and Scavenging Agents 497
6.4 Combination of PSRs 497
6.5 Summary and Conclusion 509
References 509

7 Encoding Strategies for Combinatorial Libraries 513
Berthold Hinzen
7.1 Introduction 513
7.2 Positional Encoding 514
7.3 Graphical/Barcode Encoding 514
7.4 Chemical Encoding 514
7.5 Mass Spectrometric Encoding 515
7.6 Radiofrequency Encoding 516
7.7 Conclusion 516
References 516

8 Automation and Devices for Combinatorial Chemistry and Parallel Organic Synthesis 519
Christian Zechel
8.1 Introduction 519
8.2 Synthesis 520
8.2.1 General Remarks 520
8.2.2 Manual Systems 522
8.2.3 Semi-Automated Systems 540
8.2.4 Automated Systems 540
8.2.5 Special Applications 546
8.2.5.1 Process Development 546
8.2.5.2 Equipment for Parallel Reactive Gas Chemistry 549
8.3 Liquid-Liquid Extraction 550
8.4 Equipment for High-Throughput Evaporation 551
8.5 Automated Solid and Resin Dispensing 555
8.6 Suppliers 556

9 Computer-Assisted Library Design 559
Andreas Dominik

9.1 Introduction 559
9.1.1 Optimizing Combinatorial Libraries 559
9.1.2 A Computer-Assisted Design Strategy 560
9.1.3 What is Diversity? 562
9.1.3.1 First Examples 562
9.1.3.2 Diversity of Drug Molecules 562
9.1.3.3 Diversity and Similarity 564
9.2 How Do We Compute Diversity? 566
9.2.1 An Overview 566
9.2.2 Descriptors 567
9.2.3 Classification and Mapping 567
9.2.4 Interpretation of Results: Summary 568
9.3 Descriptors 568
9.3.1 Simple Filters 571
9.3.2 Physico-chemical Constants 571
9.3.2.1 Estimation of logP Values 571
9.3.2.2 Estimation of pKa Values 572
9.3.3 Drug-Likeness 572
9.3.3.1 The Rule of 5 572
9.3.3.2 Artificial Neural Networks 573
9.3.3.3 Further Improvements of Drug-Likeness Prediction 573
9.3.3.4 ADME and Toxicity Profiling 574
9.3.4 Molecular Fingerprints 575
9.3.5 Substructure Descriptors 575
9.3.6 Single Atom Properties 576
9.3.6.1 Atom Charges 577
9.3.6.2 Atomic Lipophilicity Parameters 577
9.3.7 Topological Indices 577
9.3.7.1 Atom Indices 577
9.3.7.2 Molecule Indices 578
9.3.8 Topological Autocorrelation and Cross-correlation Coefficients 578
9.3.9 Scaffold-based Similarity 580
9.3.10 Descriptors from a Pharmacophore Model 580
Table of Contents

A.2 (Online) Journals 660
A.3 Companies and Academic Groups Involved in Combinatorial Chemistry 660
A.4 Reaction Databases 661
A.5 Summary 661

Index 663