Contents

Preface to the Technical Series xiii
Preface xv
List of Contributors xvii

1 The Health Benefits of Bioactive Compounds from Milk and Dairy Products 1
 A. Kanekanian

 1.1 The importance of milk and dairy products 1
 1.2 Dairy products: Concerns and challenges 2
 1.3 Dairy products and public health 3
 1.3.1 Heart disease 4
 1.4 Major nutrients in milk 5
 1.4.1 Proteins 5
 1.4.2 Milk fat 6
 1.4.3 Lactose and its derivatives 7
 1.4.4 Vitamins and minerals 8
 1.5 Dairy products as functional foods 8
 1.6 Bioactive compounds from milk 11
 1.6.1 Bioactive peptides 12
 1.6.2 Other bioactivities 16
 1.7 Probiotics and dairy products 17
 1.8 Summary and future trends 18
 References 18

2 Bioactive Peptides from Casein and Whey Proteins 23
 R. McCarthy, S. Mills, R.P. Ross, G.F. Fitzgerald and C. Stanton

 2.1 Introduction 23
 2.2 Direct effects of casein and whey peptides on host immunity 25
 2.2.1 Immunomodulatory peptides derived from casein 25
 2.2.2 Immunomodulatory peptides derived from whey proteins 30
 2.2.3 Indirect effects of casein and whey peptides on host immunity 32
 2.3 Antimicrobial peptides 33
3 Colostrum: Its Health Benefits
T. Marchbank and R.J. Playford

3.1 Introduction
3.2 Bioactive constituents of colostrums
 3.2.1 Peptide growth factors
 3.2.2 Non-peptide growth factors
 3.2.3 Immunological factors
3.3 Bovine colostrum use in human health
 3.3.1 Gastrointestinal diseases
 3.3.2 Non-gastrointestinal diseases
 3.3.3 Colostrum and athletic performance
3.4 Considerations
3.5 Conclusion
References

4 Casein and Whey Proteins in Human Health
K. Petrotos, E. Tsakali, P. Goulas and A.G. D’Alessandro

4.1 Introduction
4.2 Casein-derived proteins and their effect in human health
 4.2.1 The cardiovascular system
 4.2.2 The nervous system
 4.2.3 The immune system
 4.2.4 The nutrition system
4.3 Whey proteins and their direct and indirect effects on human health
 4.3.1 β-lactoglobulin
 4.3.2 α-lactalbumin
 4.3.3 Immunoglobulins
 4.3.4 Bovine serum albumin
 4.3.5 Lactoferrin
 4.3.6 Lysozyme
 4.3.7 Lactoperoxidase
 4.3.8 Casein macropeptides
 4.3.9 Other enzymes contained in the whey
4.4 The effect of processing on the bioactivity of casein and whey proteins
 4.4.1 The effect of heat treatment
 4.4.2 The effect of ultra-high-pressure processing
 4.4.3 The effect of protein hydrolysation
4.4.4 The role of processing in the production of allergenic or bitter-tasting peptides 122
4.5 Bioactive peptides production from milk and whey proteins 123
 4.5.1 Enzymatic hydrolysis 123
 4.5.2 Microbial fermentation 123
 4.5.3 Proteolysis 125
4.6 Fractionation and enrichment of bioactive peptides 127
4.7 Commercial applications and future outlook 128
4.8 Conclusion 130
References 131

5 Sports Nutrition and Dairy Products 147
G. Davison

5.1 Introduction 147
5.2 Energy balance 149
5.3 Carbohydrates
 5.3.1 Total dietary carbohydrate requirement 149
 5.3.2 Dietary carbohydrate, exercise, immune function and infection risk in athletes 151
 5.3.3 Dairy products as a source of dietary carbohydrate 151
 5.3.4 Timing and composition of carbohydrate intake 152
 5.3.5 Carbohydrate before and during exercise 152
 5.3.6 Dairy products and carbohydrate intake before and during exercise 153
 5.3.7 Carbohydrate intake after exercise 154
 5.3.8 Dairy products and carbohydrate intake after exercise 154
5.4 Protein
 5.4.1 Total dietary protein intake 155
 5.4.2 Timing of protein intake and protein composition 156
 5.4.3 Dairy products and dietary protein intake 156
5.5 Fluid and hydration
 5.5.1 Fluid intake before exercise 158
 5.5.2 Dairy products and total fluid intake 158
 5.5.3 Fluid intake during exercise 159
 5.5.4 Dairy products and fluid intake acutely before and during exercise 159
 5.5.5 Fluid intake after exercise 160
 5.5.6 Dairy products and post-exercise rehydration 160
5.6 Micronutrients 161
5.7 Bovine colostrum
 5.7.1 Body composition and strength 163
 5.7.2 Endurance performance 164
 5.7.3 High-intensity exercise (i.e. sprint and repeated sprint) performance 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.4</td>
<td>Gastrointestinal integrity/health</td>
<td>166</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Immunity</td>
<td>166</td>
</tr>
<tr>
<td>5.8</td>
<td>Probiotics</td>
<td>167</td>
</tr>
<tr>
<td>5.9</td>
<td>Summary</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Recommended further reading</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td>Dairy Fat: Perceptions and Realities</td>
<td>174</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>174</td>
</tr>
<tr>
<td>6.2</td>
<td>The dairy cow dimension</td>
<td>175</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Rumen lipid metabolism</td>
<td>175</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Milk fat synthesis</td>
<td>177</td>
</tr>
<tr>
<td>6.3</td>
<td>Saturated fatty acids</td>
<td>178</td>
</tr>
<tr>
<td>6.4</td>
<td>Trans fatty acids</td>
<td>180</td>
</tr>
<tr>
<td>6.5</td>
<td>Unsaturated fatty acids</td>
<td>183</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Oleic acid</td>
<td>184</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Omega-3 fatty acids</td>
<td>184</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Conjugated linoleic acids</td>
<td>186</td>
</tr>
<tr>
<td>6.6</td>
<td>Dairy-derived fats in foods and human health</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>Milk Ingredients as Functional Foods</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>A.S. Kvistgaard, J.B. Schroder, E. Jensen, A. Setarehnejad and A. Kanekanian</td>
<td>198</td>
</tr>
<tr>
<td>7.1</td>
<td>Infant nutrition</td>
<td>198</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Milk ingredients and intestinal protection and maturation</td>
<td>198</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Brain development and cognitive function in infant nutrition</td>
<td>201</td>
</tr>
<tr>
<td>7.2</td>
<td>Clinical nutrition</td>
<td>203</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Immobility-caused muscle loss</td>
<td>203</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Diabetes</td>
<td>205</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Inflammatory bowel disease</td>
<td>207</td>
</tr>
<tr>
<td>7.3</td>
<td>Milk ingredients in sports nutrition</td>
<td>210</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Muscle synthesis</td>
<td>211</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Muscle strength</td>
<td>212</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Endurance</td>
<td>212</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Recovery</td>
<td>212</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Body composition</td>
<td>213</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Immunity</td>
<td>213</td>
</tr>
<tr>
<td>7.4</td>
<td>Milk ingredients in functional foods</td>
<td>213</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Whey proteins and milk calcium for weight management</td>
<td>213</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Milk phospholipids for cognitive performance in adults</td>
<td>214</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Milk ingredients for natural defence</td>
<td>216</td>
</tr>
</tbody>
</table>
9.2.3 Fermented milks 296
9.2.4 Cheeses 297
9.2.5 Whey products 299
9.2.6 Butter fat 302
9.2.7 Commercial mineral concentrates 302
9.2.8 Applications 303
9.2.9 Summary 303

9.3 Vitamins in dairy products 303
9.3.1 Introduction 303
9.3.2 Cow milks 305
9.3.3 Fermented milks 307
9.3.4 Vitamin fortification of cow milks 308
9.3.5 Cheeses 308
9.3.6 Whey products 310
9.3.7 Butter fat 310
9.3.8 Summary 312

References 312

10 Legislations and Relevant Regulations 314
M. Hickey

10.1 Background and introduction 314
10.2 The Japanese approach 315
10.2.1 Subsystems of FOSHU 317
10.2.2 Broad headings for approved FOSHU 317
10.2.3 Disease reduction risk FOSHU 317
10.2.4 Foods with nutrient function claims (FNCF) 318
10.2.5 Essential elements for obtaining FOSHU approval 318
10.3 The legislative situation in the European Union (EU) 324
10.3.1 Relevant EU food safety legislation 324
10.3.2 Claims and food labelling provisions 327
10.3.3 Nutrition and health claims 327
10.3.4 Types of health claims 328
10.3.5 Nutrient profiles 334
10.4 The US legislative situation regarding health claims and functional foods 335
10.4.1 Background to US federal legislation 335
10.4.2 Evolution and development of the FDA 337
10.4.3 Functional food and claims on food in the US 337
10.5 The Canadian legislative situation regarding health claims and functional foods 342
10.5.1 Introduction and background to Canadian federal legislation 342
10.5.2 Health claims on foods in Canada 342
10.6 Health claims for foods in Australia and New Zealand 348
 10.6.1 The evolution of health and related claims in Australia and New Zealand 348
 10.6.2 The Australia and New Zealand nutrient profiling model 351
 10.6.3 Enforcement of the health claim proposals in Australia and New Zealand 354

10.7 Health foods and functional foods in China 354
 10.7.1 Background 354
 10.7.2 Chinese legislative structures 354
 10.7.3 The healthy (functional) foods sector in China and its regulation 355

10.8 Codex Alimentarius 358
 10.8.1 Background, structure, operation and role 358
 10.8.2 Codex standards, their international relevance and their role in the WTO 359
 10.8.3 Codex and the issue of health and nutrition claims 361
 10.8.4 The Codex Standard for Fermented Milks 363

10.9 Other international developments 364

10.10 Summary and conclusions 365

References 366

Index 373