Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>About the author</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

PART 1 DIODE LASER ENGINEERING

1. **Overview**
 1

1. **Basic diode laser engineering principles**
 3
 1. **Introduction**
 4
 1.1 **Brief recapitulation**
 4
 1.1.1 **Key features of a diode laser**
 4
 1.1.1.1 Carrier population inversion
 4
 1.1.1.2 Net gain mechanism
 6
 1.1.1.3 Optical resonator
 9
 1.1.1.4 Transverse vertical confinement
 11
 1.1.1.5 Transverse lateral confinement
 12
 1.1.2 **Homojunction diode laser**
 13
 1.1.3 **Double-heterostructure diode laser**
 15
 1.1.4 **Quantum well diode laser**
 17
 1.1.4.1 Advantages of quantum well heterostructures for diode lasers
 22
 1.1.4.2 *Wavelength adjustment and tunability*
 22
 1.1.4.3 *Strained quantum well lasers*
 23
 1.1.4.4 *Optical power supply*
 25
 1.1.4.5 *Temperature characteristics*
 26
 1.1.5 **Common compounds for semiconductor lasers**
 26
 1.2 **Optical output power – diverse aspects**
 31
 1.2.1 **Approaches to high-power diode lasers**
 31
 1.2.1.1 Edge-emitters
 31
 1.2.1.2 Surface-emitters
 33
 1.2.2 **High optical power considerations**
 35
 1.2.2.1 Laser brightness
 36
 1.2.2.2 Laser beam quality factor M^2
 36
CONTENTS

1.2.3 Power limitations
 1.2.3.1 Kinks 37
 1.2.3.2 Rollover 38
 1.2.3.3 Catastrophic optical damage 38
 1.2.3.4 Aging 39
1.2.4 High power versus reliability tradeoffs 39
1.2.5 Typical and record-high cw optical output powers 40
 1.2.5.1 Narrow-stripe, single spatial mode lasers 40
 1.2.5.2 Standard 100 μm wide aperture single emitters 42
 1.2.5.3 Tapered amplifier lasers 43
 1.2.5.4 Standard 1 cm diode laser bar arrays 44
1.3 Selected relevant basic diode laser characteristics 45
 1.3.1 Threshold gain 45
 1.3.2 Material gain spectra 46
 1.3.2.1 Bulk double-heterostructure laser 46
 1.3.2.2 Quantum well laser 47
 1.3.3 Optical confinement 49
 1.3.4 Threshold current 52
 1.3.4.1 Double-heterostructure laser 52
 1.3.4.2 Quantum well laser 54
 1.3.4.3 Cavity length dependence 54
 1.3.4.4 Active layer thickness dependence 56
 1.3.5 Transverse vertical and transverse lateral modes 58
 1.3.5.1 Vertical confinement structures – summary 58
 Double-heterostructure 58
 Single quantum well 58
 Strained quantum well 59
 Separate confinement heterostructure SCH and
 graded-index SCH (GRIN-SCH) 59
 Multiple quantum well (MQW) 59
 1.3.5.2 Lateral confinement structures 60
 Gain-guiding concept and key features 60
 Weakly index-guiding concept and key features 62
 Strongly index-guiding concept and key features 63
 1.3.5.3 Near-field and far-field pattern 64
 1.3.6 Fabry–Pérot longitudinal modes 67
 1.3.7 Operating characteristics 69
 1.3.7.1 Optical output power and efficiency 72
 1.3.7.2 Internal efficiency and optical loss
 measurements 74
 1.3.7.3 Temperature dependence of laser characteristics 74
 1.3.8 Mirror reflectivity modifications 77
1.4 Laser fabrication technology 81
 1.4.1 Laser wafer growth 82
 1.4.1.1 Substrate specifications and preparation 82
CONTENTS

1.4.1.2 Substrate loading 82
1.4.1.3 Growth 83

1.4.2 Laser wafer processing 84
1.4.2.1 Ridge waveguide etching and embedding 84
1.4.2.2 The p-type electrode 84
1.4.2.3 Ridge waveguide protection 85
1.4.2.4 Wafer thinning and the n-type electrode 85
1.4.2.5 Wafer cleaving; facet passivation and coating; laser optical inspection; and electrical testing 86

1.4.3 Laser packaging 86
1.4.3.1 Package formats 87
1.4.3.2 Device bonding 87
1.4.3.3 Optical power coupling 89
1.4.3.4 Device operating temperature control 95
1.4.3.5 Hermetic sealing 95

References 96

2 Design considerations for high-power single spatial mode operation 101

Introduction 102

2.1 Basic high-power design approaches 103
2.1.1 Key aspects 103
2.1.2 Output power scaling 104
2.1.3 Transverse vertical waveguides 105
2.1.3.1 Substrate 105
2.1.3.2 Layer sequence 107
2.1.3.3 Materials; layer doping; graded-index layer doping 108

Materials 108
Layer doping 113
Layer doping – n-type doping 113
Layer doping – p-type doping 113
Graded-index layer doping 114

2.1.3.4 Active layer 114

Integrity – spacer layers 114
Integrity – prelayers 115
Integrity – deep levels 115

Quantum wells versus quantum dots 116

Number of quantum wells 119

2.1.3.5 Fast-axis beam divergence engineering 121
Thin waveguides 122

Broad waveguides and decoupled confinement heterostructures 122
Low refractive index mode puller layers 124

Optical traps and asymmetric waveguide structures 126
CONTENTS

Spread index or passive waveguides 127
Leaky waveguides 128
Spot-size converters 128
Photonic bandgap crystal 130
2.1.3.6 Stability of the fundamental transverse vertical mode 133
2.1.4 Narrow-stripe weakly index-guided transverse lateral waveguides 134
2.1.4.1 Ridge waveguide 134
2.1.4.2 Quantum well intermixing 135
2.1.4.3 Weakly index-guided buried stripe 137
2.1.4.4 Slab-coupled waveguide 138
2.1.4.5 Anti-resonant reflecting optical waveguide 140
2.1.4.6 Stability of the fundamental transverse lateral mode 141
2.1.5 Thermal management 144
2.1.6 Catastrophic optical damage elimination 146
2.2 Single spatial mode and kink control 146
2.2.1 Key aspects 146
2.2.1.1 Single spatial mode conditions 147
2.2.1.2 Fundamental mode waveguide optimizations 150
Waveguide geometry; internal physical mechanisms 150
Figures of merit 152
Transverse vertical mode expansion; mirror reflectivity; laser length 153
2.2.1.3 Higher order lateral mode suppression by selective losses 154
Absorptive metal layers 154
Highly resistive regions 156
2.2.1.4 Higher order lateral mode filtering schemes 157
Curved waveguides 157
Tilted mirrors 158
2.2.1.5 Beam steering and cavity length dependence of kinks 158
Beam-steering kinks 158
Kink versus cavity length dependence 159
2.2.1.6 Suppression of the filamentation effect 160
2.3 High-power, single spatial mode, narrow ridge waveguide lasers 162
2.3.1 Introduction 162
2.3.2 Selected calculated parameter dependencies 163
2.3.2.1 Fundamental spatial mode stability regime 163
2.3.2.2 Slow-axis mode losses 163
2.3.2.3 Slow-axis near-field spot size 164
2.3.2.4 Slow-axis far-field angle 166
2.3.2.5 Transverse lateral index step 167
CONTENTS

2.3.2.6 Fast-axis near-field spot size 167
2.3.2.7 Fast-axis far-field angle 168
2.3.2.8 Internal optical loss 170

2.3.3 Selected experimental parameter dependencies 171
2.3.3.1 Threshold current density versus cladding layer composition 171
2.3.3.2 Slope efficiency versus cladding layer composition 172
2.3.3.3 Slope efficiency versus threshold current density 172
2.3.3.4 Threshold current versus slow-axis far-field angle 172
2.3.3.5 Slope efficiency versus slow-axis far-field angle 174
2.3.3.6 Kink-free power versus residual thickness 174

2.4 Selected large-area laser concepts and techniques 176
2.4.1 Introduction 176
2.4.2 Broad-area (BA) lasers 178
2.4.2.1 Introduction 178
2.4.2.2 BA lasers with tailored gain profiles 179
2.4.2.3 BA lasers with Gaussian reflectivity facets 180
2.4.2.4 BA lasers with lateral grating-confined angled waveguides 182

2.4.3 Unstable resonator (UR) lasers 183
2.4.3.1 Introduction 183
2.4.3.2 Curved-mirror UR lasers 184
2.4.3.3 UR lasers with continuous lateral index variation 187
2.4.3.4 Quasi-continuous unstable regrown-lens-train resonator lasers 188

2.4.4 Tapered amplifier lasers 189
2.4.4.1 Introduction 189
2.4.4.2 Tapered lasers 189
2.4.4.3 Monolithic master oscillator power amplifiers 192

2.4.5 Linear laser array structures 194
2.4.5.1 Introduction 194
2.4.5.2 Phase-locked coherent linear laser arrays 194
2.4.5.3 High-power incoherent standard 1 cm laser bars 197

References 201

PART 2 DIODE LASER RELIABILITY 211

Overview 211

3 Basic diode laser degradation modes 213

Introduction 213
3.1 Degradation and stability criteria of critical diode laser characteristics 214
3.1.1 Optical power; threshold; efficiency; and transverse modes 214
3.1.1.1 Active region degradation 214
3.1.1.2 Mirror facet degradation 215
CONTENTS

3.1.1.3 Lateral confinement degradation 215
3.1.1.4 Ohmic contact degradation 216
3.1.2 Lasing wavelength and longitudinal modes 220

3.2 Classification of degradation modes 222
3.2.1 Classification of degradation phenomena by location 222
3.2.1.1 External degradation 222
 Mirror degradation 222
 Contact degradation 223
 Solder degradation 224
3.2.1.2 Internal degradation 224
 Active region degradation and junction degradation 224

3.2.2 Basic degradation mechanisms 225
3.2.2.1 Rapid degradation 226
 Features and causes of rapid degradation 226
 Elimination of rapid degradation 229
3.2.2.2 Gradual degradation 229
 Features and causes of gradual degradation 229
 Elimination of gradual degradation 230
3.2.2.3 Sudden degradation 231
 Features and causes of sudden degradation 231
 Elimination of sudden degradation 233

3.3 Key laser robustness factors 234

References 241

4 Optical strength engineering 245

Introduction 245
4.1 Mirror facet properties – physical origins of failure 246
4.2 Mirror facet passivation and protection 249
 4.2.1 Scope and effects 249
 4.2.2 Facet passivation techniques 250
 4.2.2.1 E2 process 250
 4.2.2.2 Sulfide passivation 251
 4.2.2.3 Reactive material process 252
 4.2.2.4 N^2IBE process 252
 4.2.2.5 I-3 process 254
 4.2.2.6 Pulsed UV laser-assisted techniques 255
 4.2.2.7 Hydrogenation and silicon hydride barrier layer process 256
 4.2.3 Facet protection techniques 258
4.3 Nonabsorbing mirror technologies 259
 4.3.1 Concept 259
 4.3.2 Window grown on facet 260
 4.3.2.1 ZnSe window layer 260
 4.3.2.2 AlGaInP window layer 260
CONTENTS

5.2.4 Exponential distribution 294
 5.2.4.1 Introduction 294
 5.2.4.2 Properties 295
 5.2.4.3 Areas of application 297

5.3 Reliability data plotting 298
 5.3.1 Life-test data plotting 298
 5.3.1.1 Lognormal distribution 298
 5.3.1.2 Weibull distribution 300
 5.3.1.3 Exponential distribution 303

5.4 Further reliability concepts 306
 5.4.1 Data types 306
 5.4.1.1 Time-censored or time-terminated tests 306
 5.4.1.2 Failure-censored or failure-terminated tests 307
 5.4.1.3 Readout time data tests 307
 5.4.2 Confidence limits 307
 5.4.3 Mean time to failure calculations 309
 5.4.4 Reliability estimations 310

5.5 Accelerated reliability testing – physics–statistics models 310
 5.5.1 Acceleration relationships 310
 5.5.1.1 Exponential; Weibull; and lognormal distribution acceleration 311
 5.5.2 Remarks on acceleration models 312
 5.5.2.1 Arrhenius model 313
 5.5.2.2 Inverse power law 315
 5.5.2.3 Eyring model 316
 5.5.2.4 Other acceleration models 318
 5.5.2.5 Selection of accelerated test conditions 319

5.6 System reliability calculations 320
 5.6.1 Introduction 320
 5.6.2 Independent elements connected in series 321
 5.6.3 Parallel system of independent components 322

References 323

6 Diode laser reliability engineering program 325

Introduction 325
 6.1 Reliability test plan 326
 6.1.1 Main purpose; motivation; and goals 326
 6.1.2 Up-front requirements and activities 327
 6.1.2.1 Functional and reliability specifications 327
 6.1.2.2 Definition of product failures 328
 6.1.2.3 Failure modes, effects, and criticality analysis 328
 6.1.3 Relevant parameters for long-term stability and reliability 330
 6.1.4 Test preparations and operation 330
 6.1.4.1 Samples; fixtures; and test equipment 330
 6.1.4.2 Sample sizes and test durations 331
CONTENTS

6.1.5 Overview of reliability program building blocks 332
 6.1.5.1 Reliability tests and conditions 334
 6.1.5.2 Data collection and master database 334
 6.1.5.3 Data analysis and reporting 335

6.1.6 Development tests 336
 6.1.6.1 Design verification tests 336
 Reliability demonstration tests 336
 Step stress testing 337
 6.1.6.2 Accelerated life tests 339
 Laser chip 339
 Laser module 341
 6.1.6.3 Environmental stress testing – laser chip 342
 Temperature endurance 342
 Mechanical integrity 343
 Special tests 344
 6.1.6.4 Environmental stress testing – subcomponents
 and module 344
 Temperature endurance 345
 Mechanical integrity 346
 Special tests 346

6.1.7 Manufacturing tests 348
 6.1.7.1 Functionality tests and burn-in 348
 6.1.7.2 Final reliability verification tests 349

6.2 Reliability growth program 349

6.3 Reliability benefits and costs 350
 6.3.1 Types of benefit 350
 6.3.1.1 Optimum reliability-level determination 350
 6.3.1.2 Optimum product burn-in time 350
 6.3.1.3 Effective supplier evaluation 350
 6.3.1.4 Well-founded quality control 350
 6.3.1.5 Optimum warranty costs and period 351
 6.3.1.6 Improved life-cycle cost-effectiveness 351
 6.3.1.7 Promotion of positive image and reputation 351
 6.3.1.8 Increase in customer satisfaction 351
 6.3.1.9 Promotion of sales and future business 351
 6.3.2 Reliability–cost tradeoffs 351

References 353

PART 3 DIODE LASER DIAGNOSTICS 355

Overview 355

7 Novel diagnostic laser data for active layer material integrity;
 impurity trapping effects; and mirror temperatures 361
 Introduction 362
 7.1 Optical integrity of laser wafer substrates 362
 7.1.1 Motivation 362
CONTENTS

7.1 Experimental details
 7.1.2 Discussion of wafer photoluminescence (PL) maps
 7.1.3 Discussion of wafer photoluminescence (PL) maps

7.2 Integrity of laser active layers
 7.2.1 Motivation
 7.2.2 Experimental details
 7.2.2.1 Radiative transitions
 7.2.2.2 The samples
 7.2.2.3 Low-temperature PL spectroscopy setup
 7.2.3 Discussion of quantum well PL spectra
 7.2.3.1 Exciton and impurity-related recombinations
 7.2.3.2 Dependence on thickness of well and barrier layer
 7.2.3.3 Prelayers for improving active layer integrity

7.3 Deep-level defects at interfaces of active regions
 7.3.1 Motivation
 7.3.2 Experimental details
 7.3.3 Discussion of deep-level transient spectroscopy results

7.4 Micro-Raman spectroscopy for diode laser diagnostics
 7.4.1 Motivation
 7.4.2 Basics of Raman inelastic light scattering
 7.4.3 Experimental details
 7.4.4 Raman on standard diode laser facets
 7.4.5 Raman for facet temperature measurements
 7.4.5.1 Typical examples of Stokes- and anti-Stokes
 Raman spectra
 7.4.5.2 First laser mirror temperatures by Raman
 7.4.6 Various dependencies of diode laser mirror temperatures
 7.4.6.1 Laser material
 7.4.6.2 Mirror surface treatment
 7.4.6.3 Cladding layers; mounting of laser die; heat
 spreader; and number of active quantum wells

References

8 Novel diagnostic laser data for mirror facet disorder effects;
 mechanical stress effects; and facet coating instability
 8.1 Diode laser mirror facet studies by Raman
 8.1.1 Motivation
 8.1.2 Raman microprobe spectra
 8.1.3 Possible origins of the 193 cm\(^{-1}\) mode in (Al)GaAs
 8.1.4 Facet disorder – facet temperature – catastrophic optical
 mirror damage robustness correlations
 8.2 Local mechanical stress in ridge waveguide diode lasers
 8.2.1 Motivation
 8.2.2 Measurements – Raman shifts and stress profiles
 8.2.3 Detection of “weak spots”
9 Novel diagnostic data for diverse laser temperature effects; dynamic laser degradation effects; and mirror temperature maps

Introduction

9.1 Thermoreflectance microscopy for diode laser diagnostics

- **9.1.1** Motivation
- **9.1.2** Concept and signal interpretation
- **9.1.3** Reflectance–temperature change relationship
- **9.1.4** Experimental details
- **9.1.5** Potential perturbation effects on reflectance

9.2 Thermoreflectance versus optical spectroscopies

- **9.2.1** General
- **9.2.2** Comparison

9.3 Lowest detectable temperature rise

9.4 Diode laser mirror temperatures by micro-thermoreflectance

- **9.4.1** Motivation
- **9.4.2** Dependence on number of active quantum wells
- **9.4.3** Dependence on heat spreader
- **9.4.4** Dependence on mirror treatment and coating

9.5 Diode laser mirror studies by micro-thermoreflectance

- **9.5.1** Motivation
- **9.5.2** Real-time temperature-monitored laser degradation
 - **9.5.2.1** Critical temperature to catastrophic optical mirror damage
 - **9.5.2.2** Development of facet temperature with operation time
CONTENTS

9.5.2.3 Temperature associated with dark-spot defects in mirror facets 454
9.5.3 Local optical probe 455
 9.5.3.1 Threshold and heating distribution within near-field spot 455
9.6 Diode laser cavity temperatures by micro-electroluminescence 456
 9.6.1 Motivation 456
 9.6.2 Experimental details – sample and setup 456
 9.6.3 Temperature profiles along laser cavity 457
9.7 Diode laser facet temperature – two-dimensional mapping 460
 9.7.1 Motivation 460
 9.7.2 Experimental concept 460
 9.7.3 First temperature maps ever 460
 9.7.4 Independent temperature line scans perpendicular to the active layer 461
 9.7.5 Temperature modeling 462
 9.7.5.1 Modeling procedure 463
 9.7.5.2 Modeling results and discussion 465
References 466

Index 469