Contents

Contributors ix

1. Maria Isabel Andrade: Sweetpotato Breeder, Technology Transfer Specialist, and Advocate 1
 Jan W. Low and Edward Carey
 I. Early Years 3
 II. Research for Development in Southern Africa 7
 III. The Advocate and Team Player 18
 IV. The Mentor at Work and in her Community 21
 V. Awards and Service 24
 Literature Cited 25
 Publications 26

2 Development of Cold Climate Grapes in the Upper Midwestern U.S.: The Pioneering Work of Elmer Swenson 31
 Matthew D. Clark
 I. A Cold Climate Grape Industry 32
 II. Elmer Swenson 37
 III. Grape Improvement in the Midwest 53
 IV. Summary and Future Prospects 57
 Acknowledgments 57
 Literature Cited 58

3 Candidate Genes to Extend Fleshy Fruit Shelf Life 61
 Haya Friedman
 I. Introduction 62
 II. Available Methods for Breeding and Genetic Manipulations 66
 III. Cuticle Structure and Effect on Fruit Shelf Life 68
 IV. Candidate Genes for Cell-Wall Modification and Fruit Softening 69
 V. Ethylene-Biosynthesis Pathway and Effect on Fruit Ripening 77
VI. Usefulness of Components of the Ethylene-Response Pathway for Delay of Fruit Ripening 79
VII. Fruit-Ripening Delay Based on Manipulation of Upstream Transcription Factors 81
VIII. Concluding Remarks and Future Prospects 84
Acknowledgments 85
Literature Cited 86

4 Breeding Naked Barley for Food, Feed, and Malt 95
Brigid Meints and Patrick M. Hayes

I. Introduction 96
II. The Nud Gene 97
III. Traits of Interest Related to Nud 98
IV. Selecting for β-Glucan and Starch Type 102
V. Feed Barley Breeding and Quality 104
VI. Food Barley Breeding and Quality 106
VII. Malting Barley Breeding and Quality 108
VIII. Brewing 111
IX. Distilling 112
X. Conclusions and Future Directions 113
Acknowledgments 114
Literature Cited 114

5 The Foundations, Continuing Evolution, and Outcomes from the Application of Intellectual Property Protection in Plant Breeding and Agriculture 121
Stephen Smith

II. The Philosophical Basis of IP and IPR and the Need to Establish Appropriate Balances 128
III. Intellectual Property, Intellectual Property Rights, and their Associations with Plant Breeding and Agriculture 133
IV. The Global Framework within which IPR Applicable to Plant Breeding Resides 143
V. The Development of Formal Mechanisms of Intellectual Property Rights for Plant Varieties and Plant-Related Subject Matter 148
VI. Forms of Intellectual Property Protection Available to Plant Breeders and Trait Developers 156
6 The Use of Endosperm Genes for Sweet Corn Improvement: A review of developments in endosperm genes in sweet corn since the seminal publication in Plant Breeding Reviews, Volume 1, by Charles Boyer and Jack Shannon (1984) \[215\]

William F. Tracy, Stacie L. Shuler, and Hallie Dodson-Swenson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>217</td>
</tr>
<tr>
<td>II. Economics</td>
<td>218</td>
</tr>
<tr>
<td>III. Endosperm Development</td>
<td>219</td>
</tr>
<tr>
<td>IV. Endosperm Mutants, Germination, and Seedling Vigor in Sweet Corn</td>
<td>233</td>
</tr>
<tr>
<td>V. Future Prospects</td>
<td>234</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>235</td>
</tr>
</tbody>
</table>

7 Gender and Farmer Preferences for Varietal Traits: Evidence and Issues for Crop Improvement \[243\]

Eva Weltzien, Fred Rattunde, Anja Christinck, Krista Isaacs, and Jacqueline Ashby

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>245</td>
</tr>
<tr>
<td>II. Methods</td>
<td>247</td>
</tr>
<tr>
<td>III. Cases Documenting Gender Differentiation for Trait Preferences</td>
<td>250</td>
</tr>
<tr>
<td>IV. Findings on Gender-Specific Trait Preferences</td>
<td>256</td>
</tr>
<tr>
<td>V. Issues for Gender-Responsive Crop Improvement Acknowledgments</td>
<td>264</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>273</td>
</tr>
</tbody>
</table>

8 Domestication, Genetics, and Genomics of the American Cranberry \[279\]

Nicholi Vorsa and Juan Zalapa

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Domestication and Breeding</td>
<td>281</td>
</tr>
<tr>
<td>II. Life History Parameters</td>
<td>285</td>
</tr>
<tr>
<td>III. Taxonomy</td>
<td>287</td>
</tr>
<tr>
<td>IV. Cytology</td>
<td>288</td>
</tr>
</tbody>
</table>
V. Traits of Interest 289
VI. Heritability of Traits 297
VII. Molecular Markers 297
VIII. Nuclear and Organelar Genome Assembly 302
IX. Linkage Mapping and SNP Markers 303
X. Marker-Trait Association Studies 305
XI. Future Prospects 308
Acknowledgments 310
Literature Cited 310

9 Images and Descriptions of Cucurbita maxima in Western Europe in the Sixteenth and Seventeenth Centuries 317
Alice K. Formiga and James R. Myers

I. Introduction 318
II. Challenges of Identifying Cucurbits in Historical Sources 319
III. Distinguishing Cucurbita maxima 321
IV. Where was Cucurbita maxima Present in South America Before the Arrival of Europeans and how Early Could it have Arrived in Europe? 327
V. Cucurbita maxima in Herbals and Botanical and Agricultural Books 329
VI. Cucurbita maxima in Art 335
VII. Cucurbita maxima in Botanical Paintings 344
VIII. Cucurbita maxima in Genre Paintings and Still Lifes 346
IX. Conclusion and Future Prospects 349
Acknowledgments 350
Literature Cited 351

Author Index 357
Subject Index 365