INDEX

Note: Page numbers followed by “f” indicate figures.

A
ab initio molecular dynamics (AIMD), 336–337
adsorption capacity, 12
advanced photon source (APS), 310
alkanolamine-based scrubbers, 3
aminated graphite oxide (AGO), 137
amine scrubber, 3, 115
anion exchange membrane (AEM), 215
Argonne National Laboratory (ANL), 310
Arizona State University, 224
arylamines, 126
atomic force microscopy (AFM), 301
atomic layer deposition (ALD), 229, 235

B
Barrer units, 99
Basolite®, 6
1,4-benzenedicarboxylic (BDC), 91, 194
1,3,5-benzenetricarboxylic acid (BTC), 152
bipolar membrane electrodialysis (BPMED), 216
Bonse–Hart crystal, 302
Bragg peaks, 188
Bruker Smart CCD 6000 diffractometer, 184

C
CALF-25, 154
carbamate, 3
carbon-capture process/technology, 4
chemical properties of molecules in, 11
carbon dioxide
detrimental effects of, 2
importance of, 1
reaction scheme for, 3
remediation method, 2
Cartesian direction, 333
cathode and anode, electrochemistry of
CO$_2$ and CO$_3^{2-}$, electrochemical reactions pathway, 285–287
electrochemical reaction at the anode, 287–289
electrochemical reaction at the cathode, 282–284
Ceramatec, 221
chemical accuracy, 327
chemical shift anisotropy (CSA), 28
chemical vapor deposition (CVD), 227, 229
Clausius–Clapeyron equation, 13, 86
CO$_2$ capture and conversion (CCC), 213
CO$_2$ capture and storage (CCS), 213
composition of gas for, 7
oxy-fuel combustion, 8–9
post-combustion capture, 7–9
pre-combustion capture, 8–9
carbon capture and storage (CCS) technolo-
gies, 79–80
MOF, 82–83
post-combustion, 80–81
carbon capture, utilization and storage (CCUS), 268

Materials and Processes for CO$_2$ Capture, Conversion, and Sequestration, First Edition. Edited by Lan Li, Winnie Wong-Ng, Kevin Huang, and Lawrence P. Cook.
© 2018 The American Ceramic Society. Published 2018 by John Wiley & Sons, Inc.
CO₂ capture, utilization, and storage (CCUS), 296
computational modeling study, of MnO₂ octahedral molecular sieves, 344–345
atomic structure versus magnetic ordering, 345–346
cation dopant types, 348–349
CO₂ sorption behavior
DFT studies, 348–348
experimental observations, 347
OMS-5, 351–353
pore size and dimensionality, 346–347
computational models, 102
cross-polarization magic-angle-spinning (CP/MAS), 45
crystallographic techniques, 18–21
cyclic voltammograms (CV), 283

D
Decco/Essentiv™, 83
density functional theory (DFT), for carbon capture, 319–320, 323–324
accuracy of, 327–328
applications of, 328
ab initio molecular dynamics, 336–337
bandgap, 332
CO₂ diffusion, 337–337
CO₂ location and binding energetics, 329–332
elastic properties, 332
NMR, 336
phonons, 333–335
thermodynamics, 335–336
DFT+U, 326–327
general gradient approximation, 325
hybrid methods, 325–326
local density approximation, 324–325
meta-GGA, 325
microporous solids
flexible MOF, 322–323
oxide molecular sieves, 320–321
rigid MOF, 321–322
vdW forces, 327
diamond light source beamline I12, 200
differential scanning calorimetry (DSC), 42
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 22
2,5-dimethoxy-terephthalic acid, 91
dioxybenzenedicarboxylate (DOBDC), 87
dipyridylacetylene (dpa), 95
dry methane reforming (DMR), 223, 233
MOCC membrane reactor for, 254–255

E
EGC goniometer, 187
elastic single-molecule trap, 132
electrochemical CO₂ capture and conversion, 213–214
current methods, 214–215
CO₂ capture through electrodeless permeation cells, 218–221
CO₂ capture using electrolytic cells, 215–216
CO₂ conversion using electrolytic cells, 216–217
CO₂ conversion using high-temperature electrochemical cells, 221–223
high-temperature permeation membranes for
MECC membranes, 224–235
MOCC membranes, 235–255
electrochemical valorization, of carbon dioxide, 267–269
electrolytic products, applications of, 289
energy-dispersive X-ray diffraction (EDXRD), 185
environmental control cell (ECC), 182
environmental gas cell (EGC), 183
Environmental Protection Agency (EPA), 83
ethylene diamine (ED), 154
exchange correlation (xc), 324
exponential wall, 323

F
Faraday constant, 269, 278
Fe-BTC, 6
flue gas, 7, 80–81, 218
Fourier transform infrared spectroscopy, 193

G
gadolinium stabilized ceria (CGO), 243
Gamma function, 307
gas diffusivity, 99
gas permeation units (GPU), 99
general gradient approximation (GGA), 325
Gibbs free energy, 279–280
grand canonical Monte Carlo (GCMC), 13, 128
graphene oxide (GO), 137
greenhouse gas emission, constituent in, 2
Guinier approximation, 304–305

H
halide-oxide melts, 281
Hall Heroult cell, 269
Hartree–Fock exchange, 325
Helmholtz free energy, 335
Henry’s constant, 122
high-resolution TEM (HRTEM), 301
HKUST-1, 6
properties of, 88
HSEO6 hybrid calculations, 326
Hubbard parameter, 326
humid atmosphere swing chamber (HASC), 185
hybrid materials and MOF, 137–138
hybrid methods, 325–326

I
Idaho National Laboratory (INL), 221
ideal adsorbed solution theory (IAST), 12, 85, 115
inelastic neutron scattering (INS), 16
infrared spectroscopy (IR), 16
in situ diffraction studies, of MOF apparatus for
 powder diffraction applications, 185–186
 single-crystal diffraction applications, 182–184
background, 180–181
characterization, 181–182
integrated gasification and combined cycle (IGCC), 139
ionic liquids (IL), 81
Irena, 310
Irving Williams series, 35
isosteric heat of adsorption (−Qst), 13–14

J
Jacob’s ladder, 324

K
Kelvin, 278
Knudsen selectivity, 164
Kohn–Sham formalism, 332

L
La$_{0.85}$Ce$_{0.1}$Ga$_{0.3}$Fe$_{0.65}$Al$_{0.05}$O$_{3-\sigma}$ (LCGFA), 239
Langmuir model, 13–14, 133, 146
La$_{0.5}$Sr$_{0.5}$Fe$_{0.8}$Cu$_{0.2}$O$_{3-\sigma}$ (LSFCu), 239
Lawrence Berkeley National Laboratory, 187
Lewis bases, for chemisorption, 40
Lewis basic sites, 122–127. See also metal organic frameworks (MOF)
local density approximation (LDA), 324–325
local density of states (LDoS), 350

M
Material Institut Lavoisier (MIL), 88
Membrane Technology and Research (MTR) Center’s Polaris™, 100
meta-GGA methods, 325
metal organic frameworks (MOF), 90
adsorption properties of
 experimental breakthrough, 15–16
 in situ characterization, 16–30
 multicomponent adsorption, 14–15
 single-component isotherms, 11–14
ball-and-stick model of, 5
capture CO$_2$ directly from air, 140–145
carbon dioxide capture importance, 1–3
CCS technologies and, 6–10
CO$_2$ capture and separation at high pressure, 139–140
CO$_2$ capture and separation at low pressure, 116–121
conjunctive effects, 129–131
deavors, 134–137
flexible frameworks, 131–134
functional sites, 127
hybrid materials, 137–138
Lewis basic sites, 122–127
open metal sites, 121–122
size-exclusive effect, 127–129
uptake/release kinetics, 138
CO$_2$/C$_2$H$_2$ separation, 148–149
metal organic frameworks (MOF) (cont’d)
CO₂/CH₄ separation, 145–148
flexible, 322–323
future perspectives of, 61–63
graphical representation of, 82
humidity effect, 152–156
industrial process and limitations of, 3–4
industrial scale synthesis of, 6
in situ single-crystal diffraction studies of, 186–187
dynamic CO₂ adsorption behavior, 190
mechanism of CO₂ adsorption, 192–193
structure transformation induced, 188–189
thermally induced reversible
single crystal-to-single crystal transformation, 187–188
unstable intermediate stage during
guest exchange, 190–191
membrane for CCS, 99, 163–165
fabrication, 102–103
membrane performance defined, 99–101
molecule specific, 10
with open metal sites, 87–91
oxy-fuel combustion capture
biological inspiration for O₂/N₂ separations, 55–56
O₂/N₂ separations, 54–61
photocatalytic and electrochemical reduction, 149–152
post-combustion capture
CO₂ capture, 30–32
CO₂/N₂ separations, 32–34
Lewis basic sites, 37–45
open metal coordination sites, 34–37
stability and competitive binding, 45–48
powder diffraction studies of
laboratory X-ray diffraction studies, 204–206
synchrotron/neutron diffraction studies, 193–203
pre-combustion capture
advantages of, 48–49
CO₂/H₂ separations, 50–54
properties for CO₂ capture, 49–50
properties of, 97
rigid, 321–322
with saturated metal centers, 91–96
sorbents, 84
CO₂ sorbent, 84–86
criteria, 87–99
synthesis of, 4–6
microporous metal–organic frameworks, 112–116
microstructure characterization, material measurements techniques for, 300–302
MIL-53, 6
mixed electron and carbonate-ion conductor (MECC), 219
development of
dry-oxy methane reforming, 233–235
silver-molten carbonate dual-phase membrane, 225–233
stainless-steel-molten carbonate dual-phase membrane, 224–225
mixed ionic-electronic conducting (MIEC), 235
mixed matrix membrane (MMM), 102, 165
mixed-oxide ion and carbonate-ion conductor (MOCC), 219
development of
dry methane reforming, 254–255
MIEC ceramic phase, 235–243
pure oxide-ion conductor, 243–254
MOF-177, 6
molten carbonate fuel cells (MCFC), 218
molten salt carbon capture and
electrochemical transformation (MSCC-ET), 268
molten salt electrolytes, thermodynamic analysis of
alkali metal carbonates, 269–275
alkaline-earth metal carbonates, 275–277
electrolytic products, 277–278
mixed melts, 278–281
monoethanolamine (MEA), 81
Monte Carlo simulations, 28
Mössbauer spectroscopy, 58

N
2,6-naphthalenedicarboxylate (NDC), 201
National Energy Technology Laboratory (NETL), 214
near edge X-ray absorption fine structure (NEXAFS), 28
Nernst equation, 278
neutron diffraction, 58
neutron powder diffraction, 58
Ni10Cu11Fe alloy, 288
Nika, 310
NIST Center for Neutron Research (NCNR), 312
nitrogen adsorption isotherms, 11
N,N-dimethylethylene diamine (dmen), 144
N,N-dimethylformamide (DMF), 198
nodes, 113
nuclear magnetic resonance (NMR), 16, 193, 336
NuMat, 83

O
open metal coordination sites (OMC), 18, 34
MOF with, 34–37
properties of, 97
open metal sites (OMS), 87–91, 114, 121–122. See also metal organic frameworks (MOF)
optical microscopy (OM), 301
Oxford-Diamond In Situ Cell (ODISC), 185–186
oxide molecular sieves (OMS), 320–321
oxygen transport membrane (OTM), 221

P
permeability (P), calculation of, 99
permeance, 99
perturbation theory, 333
phonons, 333–335
3-picolyamine, 156
Polaris membrane, 100
polyethyleneimine (PEI), 42, 90, 125
poly(vinyl acetate) (PVAc), 165
pore space partition (PSP), 127
porous coordination polymers (PCP), 112
porphyrins, 55
post-synthetic exchange (PSE), 128
powder diffraction applications, 185–186
environmental chambers, 185
Oxford-Diamond In Situ Cell, 185–186
simultaneous PXRD and DSC techniques, 185
powder diffraction studies, of MOF
laboratory X-ray diffraction studies, 204–206
synchrotron/neutron diffraction studies, 193–203
breathing modes, 194–195
framework formation in action, 200–201
metastable intermediate transformation, 197–198
multiple-phase transitions, 195–196
resin-assisted solvothermal MOF synthesis, 201–203
reversible gas sorption driven, 198–200
pressure swing adsorption (PSA), 8, 134
proton transport membranes (PTM), 232

Q
quartz pressure cell (QPC), 183–184
quasi-elastic neutron scattering (QENS), 16, 26, 312

R
Raman frequencies, 335
Raman spectroscopy, 16, 102
reticular synthesis, 113
reverse water-gas shift (RWGS) reaction, 222
Rietveld analysis, 58
of neutron powder, 35
Rigaku Ultima IV diffractometer, 185
Robeson plot, 101

S
samarium doped ceria (SDC), 243
saturated metal centers (SMC), 91
scanning electron microscopy (SEM), 301
Schlenk line techniques, 5
Schrödinger’s equation, 323
selectivity factor (S), 12
selectivity/separation factor, 99–100
SIFSIX-2-Cu bipy (4,4-bipyridine), 95
SIFSIX-2-Cu bpy (1,2-(bispyridyl)ethylene), 95
SIFSIX MOFs, 94
single-crystal diffraction applications, 182–184
environmental control cell, 182
environmental gas cell, 183
quartz pressure cell, 183–184
single-molecule traps (SMT), 129
small-angle neutron scattering (SANS), 298
small-angle X-ray scattering (SAXS), 298
sodium montmorillonite (SWY-3), 307
solid oxide electrolysis cells (SOEC), 221
solution-diffusion model, 99
space time yields (STY), 6
spectroscopic techniques, 21–30
subsurface CO2 trapping mechanisms, 298–300
syngas production, 222

T
temperature swing adsorption (TSA), 8, 84, 134
temperature/vacuum swing adsorption (TVSA), 160
thermal gravimetric analysis (TGA), 85, 347
thermodynamic analysis, of mixed melts, 278–281
tilt angle, 26
Torlon®, 103
total carbon (TC), 299
total inorganic carbon (TIC), 299
transmission electron microscopy (TEM), 301
triethanolamine (TEOA), 150
triethylene glycol (TEG), 158
triple phase boundaries (TPB), 230
TruPick, 83
turnover number (TON), 150

U
UiO66 Zr, 91
structure representation of, 92
ultrasmall-angle neutron scattering (USANS), 298
ultrasmall- and small-angle scattering data, analyses of fractal morphologies, 306–307
Porod scattering regime, 305
shapes and size distributions, 305–306
volume fractions, mean volumes, and radius of gyration, 304–305
University of South Carolina, 225
“upper bound,” 101
USAXS/SAXS instrumentation, 302–303
USAXS/SAXS/WAXS characterization experimental methods, 307–310
outcomes, 310–312
U.S. Department of Energy (DOE), 79–80
UTSA-16–GO19 composite, 147

V
vacuum swing adsorption (VSA), 8, 84, 134
van der Waals (vdW) forces, 327
very small angle neutron scattering (vSANS), 313

W
water-gas-shift reaction (WGSR), 235
wide-angle neutron scattering (WANS), 302
wide-angle X-ray scattering (WAXS), 302
working capacity, defined, 49. See also metal organic frameworks (MOF)

X
X-ray absorption spectroscopy (XAS), 16, 28
XRD-DSC system, 185

Y
yttria stabilized zirconia (YSZ), 243

Z
zeolite, 83
adsorbents, in comparison with MOF, 158–163
zeolitic imidazolate frameworks (ZIF), 38, 92, 164
structural representation of, 93f
ZIF-8, 6
Zn(bipy)2SiF6∙2H2O, 93
unit cell of, 94f
zwitterionic carbamates, 24