Contents

List of contributors, xi
Foreword, xiii
Preface, xvii

1 Introduction: what is chemesthesis?, 1
 Barry G. Green
 1.1 A brief history, 1
 1.2 What is its relevance today?, 3
 References, 5

2 Psychology of chemesthesis – why would anyone want to be in pain?, 8
 Pamela Dalton and Nadia Byrnes
 2.1 Introduction and background, 8
 2.1.1 Individual variation in hedonic response, 10
 2.2 Physiological differences: maybe they can’t feel the burn?, 11
 2.2.1 Genetics: variability in sensation and diet, 11
 2.2.2 Anatomy: oral phenotypes and sensation, 12
 2.3 Effects of exposure on chemesthetic response (social), 13
 2.3.1 Desensitization, 13
 2.3.2 Affective shift: “learning to like”, 15
 2.4 Cognitive factors underlying chemesthetic response: state versus trait, 17
 2.4.1 Personality traits, 18
 2.4.2 New forms of sensation seeking scales, 18
 2.4.3 Personality and food choice, 22
 2.4.4 Cognitive factors underlying chemesthetic response: states, 24
 2.5 Benefits of liking, 25
 2.6 Summary, 25
 References, 25

3 Spice and herb extracts with chemesthetic effects, 32
 Howard Haley and Shane T. McDonald
 3.1 Why plants have chemesthetic properties, 32
 3.2 Hot pungent spices: capsicum species, 33
 3.3 Other hot pungent spices, 34
 3.3.1 Cinnamon and cassia, 34
 3.3.2 Black and white pepper, 35
 3.3.3 Ginger, 35
3.4 Nasal heat spices, 36
 3.4.1 Mustard, 36
 3.4.2 Horseradish, 36
 3.4.3 Wasabi, 37
3.5 Cooling spices, 37
 3.5.1 Mint, 37
 3.5.2 Eucalyptus, 38
3.6 Numbing spices, 38
 3.6.1 Cloves, 38
 3.6.2 Wintergreen, 39
3.7 Tingling spices, 39
 3.7.1 Jambu, 39
 3.7.2 Szechuan pepper, 39
3.8 Spice and herb extracts, 40
 3.8.1 Extracts, 40
3.9 Regulatory control of spices and herb extracts with chemesthetic properties, 43
3.10 Advantages of spices, essential oils, and oleoresins, 44
References, 45

4 Molecular mechanisms underlying the role of TRP channels in chemesthesis, 48
 Yerandy A. Alpizar, Thomas Voets, and Karel Talavera
4.1 Introduction, 48
4.2 TRPM8, 49
 4.2.1 Mathematical models of TRPM8 function: heated debate over a cool channel, 50
 4.2.2 Structural determinants of activation of TRPM8 by menthol, 57
4.3 TRPV1, 61
 4.3.1 Cross-sensitization between TRPV1 agonists, 64
4.4 TRPA1, 65
4.5 Concluding remarks, 70
Acknowledgments, 71
References, 71

5 Anatomy and physiology of chemesthesis, 77
 Cecil J. Saunders and Wayne L. Silver
5.1 Introduction, 77
5.2 Anatomy, 77
 5.2.1 Oral cavity, 78
 5.2.2 Nasal cavity, 79
 5.2.3 Solitary chemosensory cells, 80
 5.2.4 Other chemosensory epithelial cells, 82
5.3 Physiology, 83
 5.3.1 Reflexes, 83
 5.3.2 Neurophysiology of chemesthesis, 83
5.4 Summary, 87
References, 87
6 Types of chemesthesis I. Pungency and burn: historical perspectives, word usage, and temporal characteristics, 92

John E. Hayes

6.1 Introduction, 92
6.1.1 Müller, Myers, and the doctrine of specific nerve energies, 92
6.1.2 Columbian Exchange and the quest for spices, 93
6.2 Language usage, 94
6.3 Differentiation from classical tastes, 96
6.4 Sensitization, 97
6.5 Acute psychophysical desensitization, 98
6.6 Chronic psychophysical desensitization, 101
6.7 Summary, 102

References, 103

7 Types of chemesthesis II: Cooling, 106

Steven Pringle

7.1 Consumers and oral perception: where chemesthesis contributes to flavor, 106
7.1.1 Taste perception, 106
7.2 Molecular structure and physiological cooling, 109
7.2.1 Menthol derivatives, 110
7.2.2 Non-menthol derived coolants, 120
7.3 Physiological cooling outside of the oral cavity, 123
7.4 Usage and consumer perception, 126
7.4.1 Physiological coolants in applications beyond cooling, 127
7.4.2 Physiological cooling and flavor enhancement, 128
7.5 Cooling compounds – the next steps, 130

References, 131

8 Types of chemesthesis III. Tingling and numbing, 134

Christopher T. Simons

8.1 Introduction, 134
8.1.1 Historical use of tingling and numbing compounds, 134
8.2 Tingle mechanisms, 136
8.2.1 Two-pore K⁺ channels, 136
8.2.2 Carbonic anhydrase/TRPA1, 136
8.3 Numbing (anaesthetic) mechanisms, 138
8.3.1 Alkylamides and two-pore K⁺ channels, 138
8.3.2 Alkylamides and voltage-gated Na⁺ channels, 138
8.3.3 Eugenol and voltage-gated sodium (Na⁺) channels, 139
8.3.4 Eugenol and voltage-gated calcium (Ca²⁺) channels, 139
8.4 Tingle/numbing neural processing, 140
8.4.1 Activation of peripheral and central mechanosensory fibers by alkylamides, 141
8.4.2 Activation of peripheral and central nociceptive fibers by carbonation, 143
8.4.3 Inhibition of peripheral fibers by alkylamides and eugenol, 143
8.5 Psychophysical evaluations of tingle, 144
8.5.1 Alkylamide tingle: temporal phenomena, 144
8.5.2 Alkylamide tingle: mechanosensory sensitivity, 145
8.5.3 Alkylamide tingle: effect of temperature, 145
8.5.4 CO₂ tingle: concentration and tastant effects, 146
8.5.5 CO₂ tingle: impact of carbonic anhydrase blockers, 146
8.5.6 CO₂ tingle: impact of bubbles, 147
8.5.7 CO₂ tingle: self-desensitization and cross-desensitization by capsaicin, 147
8.5.8 CO₂ tingle: effect of temperature, 148
8.6 Psychophysical evaluations of numbing, 148
8.6.1 Alkylamide numbing, 148
8.6.2 Eugenol numbing, 149
8.7 Summary, 149
References, 150

9 Interactions in chemesthesis: everything affects everything else, 154
 Brian Byrne
9.1 Introduction, 154
9.2 Coolants, 154
9.3 Sweet, 157
9.4 Salt, 159
9.5 Mouthfeel, 160
9.6 Astringency and bitterness, 161
9.7 Aroma (retronasal and orthonasal), 162
9.8 Conclusion, 163
References, 164

10 Some like it hot! Sensory analysis of products containing chemesthetic compounds, 166
 Cindy Ward
10.1 Introduction, 166
10.2 Overview of test approaches for sensory evaluation of chemesthetic compounds in consumer products, 169
10.3 The phenomena of sensitization and desensitization, 169
10.4 Testing products containing chemesthetic compounds, 170
10.5 Discrimination testing with trigeminal compounds, 172
10.6 Rating of chemesthetic agent intensity, 172
10.7 Dose response, 172
10.8 Descriptive analysis of chemesthetic agents containing samples, 174
10.9 Alcohol burn case study, 176
10.10 Time intensity, 178
10.11 Consumer testing with chemesthetic agents, 182
10.12 Conclusions, 183
Acknowledgments, 183
References, 183
11 Analytical chemistry of chemesthetic compounds, 185
 David A. Bolliet
 11.1 Introduction, 185
 11.2 Allyl isothiocyanate, 185
 11.3 Capsaicinoids, 186
 11.4 Carbonic acid, 190
 11.5 Cinnamaldehyde, 191
 11.6 Eugenol, 193
 11.7 Gingerols and shogaols, 195
 11.8 Menthol, 197
 11.9 Piperine, 198
 11.10 Sanshools, 202
 11.11 Spilanthol, 204
 11.12 Conclusions, 205
 Abbreviations, 206
 References, 207

12 Chemesthesis and health, 227
 Richard D. Mattes and Mary-Jon Ludy
 12.1 Introduction, 227
 12.2 Cultural patterns of intake, 228
 12.3 Appetite, 230
 12.3.1 Suppression of appetitive sensations, 230
 12.3.2 Enhancement of appetitive sensations, 234
 12.3.3 Decreased energy intake, 234
 12.3.4 Increased energy intake, 235
 12.4 Thermogenesis, 236
 12.4.1 Hot red peppers (capsaicin), 237
 12.4.2 Black pepper (piperine), 238
 12.4.3 Ginger (gingerols, shogaols, and zingerone), 239
 12.4.4 Mustard (allyl isothiocyanate), 240
 12.5 Body weight, 240
 12.6 Individual variability, 241
 12.7 Conclusion, 242
 References, 243

13 On food and chemesthesis – food science and culinary perspectives, 250
 Christopher R. Loss and Ali Bouzari
 13.1 Introduction: putting chemesthesis in the context of flavor, 250
 13.2 Historical and cultural context for the use of chemesthetic ingredients
 in foods, 251
 13.2.1 Cultural connections to chemesthetic agents, 251
 13.2.2 History of use of chemesthetic agents in prepared foods
 and food service, 252
 13.2.3 Chemesthetics and health, 252
 References, 254
13.3 Sources of chemesthetic agents in the kitchen and at the product
development lab bench, 253
13.3.1 Herbs, 254
13.3.2 Spices, 254
13.3.3 Fruits, 255
13.3.4 Vegetables, 256
13.3.5 Fermented foods, 256
13.3.6 Extracts and dry blends, 257
13.3.7 Plant breeding, 257
13.4 Culinary techniques and chemesthetic agents, 258
13.4.1 Incorporation, 258
13.4.2 Impact of culinary technique on intensity, 260
13.5 Applications of chemesthetic agents in the food industry, 260
13.5.1 Chemesthetic agents in global cuisines, 260
13.5.2 Creating “craveable” culinary experiences with chemesthetic
agents, 262
13.5.3 Food safety and preservation, 263
13.5.4 Modern applications of chemesthetic agents in fine dining, 263
References, 265

14 Overview of chemesthesis with a look to the future, 268
E. Carstens
14.1 Introduction, 268
14.2 Peripheral innervation of oral, ocular, and nasal mucosa and skin, 269
14.3 TRPV1, 270
14.4 TRPA1, 273
14.5 TRPV3, TRPV4, and warming, 274
14.6 TRPM8 and cold, 275
14.7 Tingle, 276
14.8 NaCl, 277
14.9 Itch, 277
14.10 Interactions between chemesthesis and taste, 278
14.11 Summary and conclusions, 279
References, 279

Index, 286