CONTENTS

FOREWORD xv
ACKNOWLEDGEMENTS xvii
PREFACE xix
SYMBOLS xxi
ABBREVIATIONS xxiii
INTRODUCTION xxv

PART I BATTERIES WITH AQUEOUS ELECTROLYTES 1

1 GENERAL ASPECTS 3
1.1 Definition, 3
1.2 Current-Producing Chemical Reaction, 3
1.3 Classification, 5
1.4 Thermodynamic Aspects, 6
1.5 Historical Development, 8
1.6 Nomenclature, 9
Reviews and Monographs, 10
CONTENTS

2 MAIN BATTERY TYPES 11

2.1 Electrochemical Systems, 11
2.2 Leclanché (Zinc–Carbon) Batteries, 12
2.3 The Zinc Electrode in Alkaline Solutions, 14
2.4 Alkaline Manganese–Zinc Batteries, 14
2.5 Lead Acid Batteries, 17
2.6 Alkaline Nickel Storage Batteries, 20
2.7 Silver–Zinc Batteries, 23
 References, 24
 Monographs and Reviews, 25

3 PERFORMANCE 27

3.1 Electrical Characteristics of Batteries, 27
3.2 Electrical Characteristics of Storage Batteries, 30
3.3 Comparative Characteristics, 30
3.4 Operational Characteristics, 31
 References, 32

4 MISCELLANEOUS BATTERIES 33

4.1 Mercury–Zinc Batteries, 33
4.2 Compound Batteries, 34
4.3 Batteries with Water as Reactant, 37
4.4 Standard Cells, 38
4.5 Reserve Batteries, 39
 Reference, 41
 Reviews and Monographs, 41

5 DESIGN AND TECHNOLOGY 43

5.1 Balance in Batteries, 43
5.2 Scale Factors, 44
5.3 Separators, 44
5.4 Sealing, 46
5.5 Ohmic Losses, 47
5.6 Thermal Processes in Batteries, 48

6 APPLICATIONS OF BATTERIES 51

6.1 Automotive Equipment Starter and Auxiliary Batteries, 51
6.2 Traction Batteries, 52
6.3 Stationary Batteries, 53
6.4 Domestic and Portable Systems, 53
6.5 Special Applications, 54
CONTENTS

7 OPERATIONAL PROBLEMS 55
 7.1 Discharge and Maintenance of Primary Batteries, 55
 7.2 Maintenance of Storage Batteries, 56
 7.3 General Aspects of Battery Maintenance, 60

8 OUTLOOK FOR BATTERIES WITH AQUEOUS ELECTROLYTE 63
 References, 64

PART II BATTERIES WITH NONAQUEOUS ELECTROLYTES 65

9 DIFFERENT KINDS OF ELECTROLYTES 67
 9.1 Electrolytes Based on Aprotic Nonaqueous Solutions, 68
 9.2 Ionically Conducting Molten Salts, 69
 9.3 Ionically Conducting Solid Electrolytes, 70
 References, 72

10 INSERTION COMPOUNDS 73
 Monographs and Reviews, 76

11 PRIMARY LITHIUM BATTERIES 77
 11.1 General Information: Brief History, 77
 11.2 Current-Producing and Other Processes in Primary Power Sources, 79
 11.3 Design of Primary Lithium Cells, 81
 11.4 Fundamentals of the Technology of Manufacturing of Lithium Primary Cells, 82
 11.5 Electric Characteristics of Lithium Cells, 82
 11.6 Operational Characteristics of Lithium Cells, 83
 11.7 Features of Primary Lithium Cells of Different Electrochemical Systems, 84
 Monographs, 89

12 LITHIUM ION BATTERIES 91
 12.1 General Information: Brief History, 91
 12.2 Current-Producing and Other Processes in Lithium Ion Batteries, 93
 12.3 Design and Technology of Lithium Ion Batteries, 96
 12.4 Electric Characteristics, Performance, and Other Characteristics of Lithium Ion Batteries, 98
 12.5 Prospects of Development of Lithium Ion Batteries, 99
 Monographs, 101
<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Lithium Ion Batteries: What Next?</td>
<td>103</td>
</tr>
<tr>
<td>13.1</td>
<td>Lithium–Air Batteries</td>
<td>103</td>
</tr>
<tr>
<td>13.2</td>
<td>Lithium–Sulfur Batteries</td>
<td>106</td>
</tr>
<tr>
<td>13.3</td>
<td>Sodium Ion Batteries</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Reviews</td>
<td>110</td>
</tr>
<tr>
<td>14</td>
<td>Solid-State Batteries</td>
<td>111</td>
</tr>
<tr>
<td>14.1</td>
<td>Low-Temperature Miniature Batteries with Solid Electrolytes</td>
<td>111</td>
</tr>
<tr>
<td>14.2</td>
<td>Sulfur–Sodium Storage Batteries</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Monographs and Reviews</td>
<td>115</td>
</tr>
<tr>
<td>15</td>
<td>Batteries with Molten Salt Electrolytes</td>
<td>117</td>
</tr>
<tr>
<td>15.1</td>
<td>Storage Batteries</td>
<td>117</td>
</tr>
<tr>
<td>15.2</td>
<td>Reserve-Type Thermal Batteries</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>122</td>
</tr>
<tr>
<td>16</td>
<td>General Aspects</td>
<td>125</td>
</tr>
<tr>
<td>16.1</td>
<td>Thermodynamic Aspects</td>
<td>125</td>
</tr>
<tr>
<td>16.2</td>
<td>Schematic Layout of Fuel-Cell Units</td>
<td>128</td>
</tr>
<tr>
<td>16.3</td>
<td>Types of Fuel Cells</td>
<td>131</td>
</tr>
<tr>
<td>16.5</td>
<td>Basic Parameters of Fuel Cells</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Monographs</td>
<td>140</td>
</tr>
<tr>
<td>17</td>
<td>The Development of Fuel Cells</td>
<td>141</td>
</tr>
<tr>
<td>17.1</td>
<td>The Period prior to 1894</td>
<td>141</td>
</tr>
<tr>
<td>17.2</td>
<td>The Period from 1894 to 1960</td>
<td>143</td>
</tr>
<tr>
<td>17.3</td>
<td>The Period from 1960 to the 1990s</td>
<td>144</td>
</tr>
<tr>
<td>17.4</td>
<td>The Period after the 1990s</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Monographs and Reviews</td>
<td>150</td>
</tr>
<tr>
<td>18</td>
<td>Proton-Exchange Membrane Fuel Cells (PEMFC)</td>
<td>151</td>
</tr>
<tr>
<td>18.1</td>
<td>The History of PEMFC</td>
<td>151</td>
</tr>
<tr>
<td>18.2</td>
<td>Standard PEMFC Version of the 1990s</td>
<td>154</td>
</tr>
<tr>
<td>18.3</td>
<td>Operating Conditions of PEMFC</td>
<td>156</td>
</tr>
</tbody>
</table>
18.4 Special Features of PEMFC Operation, 157
18.5 Platinum Catalyst Poisoning by Traces of Co in the Hydrogen, 159
18.6 Commercial Activities in Relation to PEMFC, 161
18.7 Future Development of PEMFCs, 162
18.8 Elevated-Temperature PEMFCs (ET-PEMFCs), 167
References, 170
Reviews, 170

19 DIRECT LIQUID FUEL CELLS WITH GASEOUS, LIQUID, AND/OR SOLID REAGENTS 171
19.1 Current-Producing Reactions and Thermodynamic Parameters, 172
19.2 Anodic Oxidation of Methanol, 172
19.3 Use of Platinum–Ruthenium Catalysts for Methanol Oxidation, 173
19.4 Milestones in DMFC Development, 173
19.5 Membrane Penetration by Methanol (Methanol Crossover), 174
19.6 Varieties of DMFC, 176
19.7 Special Operating Features of DMFC, 178
19.8 Practical Prototypes of DMFC and Their Features, 180
19.9 The Problems to be Solved in Future DMFC, 181
19.10 Direct Liquid Fuel Cells (DLFC), 183
Reference, 188
Reviews, 188

20 MOLTEN CARBONATE FUEL CELLS (MCFC) 191
20.1 Special Features of High-Temperature Fuel Cells, 191
20.2 The Structure of Hydrogen–Oxygen MCFC, 192
20.3 MCFC with Internal Fuel Reforming, 194
20.4 The Development of MCFC Work, 195
20.5 The Lifetime of MCFCs, 196
References, 198
Reviews and Monographs, 198

21 SOLID OXIDE FUEL CELLS (SOFCs) 199
21.1 Schematic Design of a Conventional SOFC, 200
21.2 Tubular SOFCs, 201
21.3 Planar SOFCs, 202
21.4 Varieties of SOFCs, 205
21.5 The Utilization of Natural Fuels in SOFCs, 206
21.6 Interim-Temperature SOFCs (ITSOFCs), 208
21.7 Low-Temperature SOFCs (LT-SOFC), 211
21.8 Factors Influencing the Lifetime of SOFCs, 211
PART III FUEL CELLS

22 OTHER TYPES OF FUEL CELLS

22.1 Phosphoric Acid Fuel Cells (PAFCs), 213
22.2 Redox Flow Fuel Cells, 218
22.3 Biological Fuel Cells, 221
22.4 Direct Carbon Fuel Cells (DCFCs), 224
References, 227
Monographs, 227

23 ALKALINE FUEL CELLS (AFCs)

23.1 Hydrogen–Oxygen AFCs, 230
23.2 Problems in the AFC Field, 233
23.3 The Present State and Future Prospects of AFC Work, 235
23.4 Anion-Exchange (Hydroxyl Ion Conducting) Membranes, 236
23.5 Methanol Fuel Cell with an Invariant Alkaline Electrolyte, 237
References, 237
Monograph, 237

24 APPLICATIONS OF FUEL CELLS

24.1 Large Stationary Power Plants, 239
24.2 Small Stationary Power Units, 242
24.3 Fuel Cells for Transport Applications, 243
24.4 Portables, 248
24.5 Military Applications, 250
References, 250

25 OUTLOOK FOR FUEL CELLS

25.1 Alternating Periods of Hope and Disappointment—Forever? 252
25.2 Development of Electrocatalysis, 252
25.3 “Ideal Fuel Cells” Do Exist, 253
25.4 Expected Future Situation with Fuel Cells, 255
Reference, 256
Monographs, 256

PART IV SUPERCAPACITORS

26 GENERAL ASPECTS

26.1 Electrolytic Capacitors, 259
References, 261
CONTENTS

27 ELECTROCHEMICAL SUPERCAPACITORS WITH CARBON ELECTRODES 263

27.1 Introduction, 263
27.2 Main Properties of Electric Double-Layer Capacitors (EDLC), 264
27.3 EDLC Energy Density and Power Density, 267
27.4 Fundamentals of EDLC Macrokinetics, 271
27.5 Porous Structure and Hydrophilic–Hydrophobic Properties of Highly Dispersed Carbon Electrodes, 272
27.6 Effect of Ratio of Ion and Molecule Sizes and Pore Sizes, 275
27.7 Effect of Functional Groups on EDLC Characteristics, 277
27.8 Electrolytes Used in EDLC, 279
27.9 Impedance of Highly Dispersed Carbon Electrodes, 283
27.10 Nanoporous Carbons Obtained Using Various Techniques, 286
27.11 High-Frequency Carbon Supercapacitors, 303
27.12 Self-Discharge of Carbon Electrodes and Supercapacitors, 306
27.13 Processes of EDLC Degradation (AGING), 311
References, 313
Monograph and Reviews, 313

28 PSEUDOCAPACITOR ELECTRODES AND SUPERCAPACITORS 315

28.1 Electrodes Based on Inorganic Salts of Transition Metals, 315
28.2 Electrodes Based on Electron-Conducting Polymers (ECPs), 322
28.3 Redox Capacitors Based on Organic Monomers, 333
28.4 Lithium-Cation-Exchange Capacitors, 335
References, 337
Monograph and Reviews, 337

29 HYBRID (ASYMMETRIC) SUPERCAPACITORS (HSCs) 339

29.1 HSCs of MeO/C Types, 339
29.2 HSCs of ECP/C Type, 343
References, 344
Review, 344

30 COMPARISON OF CHARACTERISTICS OF SUPERCAPACITORS AND OTHER ELECTROCHEMICAL DEVICES. CHARACTERISTICS OF COMMERCIAL SUPERCAPACITORS 345

Reference, 350
Reviews, 350

31 PROSPECTS OF ELECTROCHEMICAL SUPERCAPACITORS 351
32 ELECTROCHEMICAL ASPECTS OF SOLAR ENERGY CONVERSION 355

32.1 Photoelectrochemical Phenomena, 355
32.2 Photoelectrochemical Devices, 356
32.3 Photoexcitation of Metals (Electron Photoemission into Solutions), 356
32.4 Behavior of Illuminated Semiconductors, 357
32.5 Semiconductor Solar Batteries (SC-SB), 358
32.6 Dye-Sensitized Solar Cells (DSSC), 360
References, 363
Reviews and Monographs, 363

AUTHOR INDEX 365

SUBJECT INDEX 369