Absolute risk aversion, 180n
Active portfolio management,
Black-Litterman model
(relationship), 154–159
After-burn-in simulation, 76
Alpha, 120–121
distribution, posterior moments,
157–158
forecast, 158–159
perspective, 157–158
Arbitrage Price Theory (APT), 118,
163, 281
certainty equivalent returns,
173–174
distributional assumptions,
172–173
posterior distributions, 172–173
predictive distributions, 172–173
testing, 171–174
ARCH. See Autoregressive
conditionally heteroskedastic
ARMA. See Autoregressive moving average
Asset pricing models, 118
confidence, 123
preliminaries, 119–121
relationship. See Prior beliefs
validity, confidence
(incorporation), 128–129
Asset pricing relationship, validity,
145n
Asset returns
covariance matrix, 143
nonnormality, 188–189
time-series regression, usage,
164–165
Asymmetric Student's
\(t \)-distributions, 250–251
Asymmetric volatility, 189, 195
Asymmetry parameter, 297
AT&T stock, transaction data
(consideration), 16–17
Autocorrelations, impact. See
Convergence
Autoregressive conditionally
heteroskedastic (ARCH)
ARCH-in-mean model, 190
ARCH-type model, 186, 194
selection, 200
ARCH-type volatility models,
Bayesian estimation, 202
distributional setup, 204–206
terms, usage, 187
Autoregressive moving average
(ARMA). See Multivariate
ARMA
ARMA(1,1)-GARCH(1,1) model,
estimation, 193
ARMA(1,1) process, 215
return model, 190
Autoregressive process,
time-reversibility (usage),
233
Auxiliary model, 196–197
Bayesian decisions, Greenspan
outline, 3
Bayesian empirical tests. See
Mean-variance efficiency
Bayesian estimation. See Stochastic volatility model
Bayesian hypothesis, comparison, 32–34
Bayesian inference process, 22
Bayesian intervals, 32
Bayesian linear regression model, 43
Bayesian methodology, 165
Bayesian methods
application, 4n
introduction, 1
overview, 4–5
selection, 200–201
Bayesian model averaging (BMA), 131–134
methodology, 130–131
portfolio selection, 133–134
posterior model probabilities, 132–133
posterior parameter distributions, 132–133
predictive distribution, 133–134
prior distributions, 131–132
Bayesian numerical computation, 61
Bayesian paradigm, 6
Bayesian portfolio problem, 177
Bayesian portfolio selection, 101–108
advanced techniques, 247
illustration, 106–108
problem, solution, 173
Bayesian predictive inference, 34–35
Bayes’ Theorem, 6, 10–21
classification, relationship, 14–15
continuous version, 19
discrete version, consideration, 11
model selection, relationship, 14
Benchmark efficiency, confidence, 157
Benchmark inefficiency, 156
Benchmark parameters, posterior distributions, 125–126
Benchmark portfolios, 122
efficiency, 169
Benchmark timing, 156
Berger, James, 12n, 23n, 25n
Bernardo, José, 12n, 25n
Bernoulli-distributed random variable, 242
Bernoulli likelihood function, 132n
Beta
definition, 127n
distribution, basis, 237–238
estimation. See Stocks
marginal (unconditional) distribution, 47
posterior densities, 56e
posterior inference, 55e
Beta conditional, posterior distribution, 46
Beta-distributed random variable, 25
Beta distribution, 17n
conjugate prior distribution, 20
Beta function, 18
Binary data, analysis, 82n
Binary dependent variable, Bernoulli distribution, 83
Binomial parameter, prior distributions (density curves), 18e
Binomial probability
Bayesian inference, 15–21
informative prior elicitation, 25
Black-Litterman (BL) approach, extension, 263–270
stable distribution, usage, 270–272
Black-Litterman (BL) framework, extension (consideration), 255
Black-Litterman (BL) model, 94, 118
market equilibrium, usage, 264
perspective, 157–158
relationship. See Active portfolio
management
trading strategies, incorporation, 153–154
Black-Litterman (BL) optimal
allocation, illustration, 149–152
Black-Litterman (BL) portfolio
selection framework, 141
absolute view, 144
distributional assumptions, 144–146
investor perspective, 144
market information, 144–145
preliminaries, 142–146
relative view, 144
subjective views, 145–146
values, selection, 147–148
Black-Scholes option-pricing
formula, constant volatility
(assumption), 194n
Block structure M-H algorithm,
72–73
extension, 73
B/M. See Book value to market
value ratio
BMA. See Bayesian model averaging
Book-to-market (BM) ratios, 53,
175, 282
Book-to-market (BM) value, 134
Book value to market value ratio
(B/M), 163
Broad-based index, 165–166
Burn-in fraction, 75. See also
Markov chain
Burn-in simulation. See
After-burn-in simulation
Buy-and-hold investor, 178
Candidate-generating density, 67
Candidate model, likelihood
function, 138–140
Capital Asset Pricing Model
(CAPM), 118, 163
assumptions, 120
deficiency, 280
distributional assumptions,
168–169
empirical analogue, 120
equilibrium pricing model, 166
extension, 257n
implication, 119, 165
inference, usage, 134
posterior distributions, 168–169
testing, inefficiency measures
(usage), 167–171
usage, 128
validity, uncertainty, 129e
Cash flow/total debt ratio, 86
CDF. See Cumulative distribution
function
Certainty-equivalence scenario,
105, 107–108
Certainty equivalent returns. See
Arbitrage Price Theory
Common-factor risk component,
290–291
Conditional densities, product, 192
Conditional distribution. See
Unobserved volatility
expression, 240
sampling, 261
Conditional log-posterior
distribution, kernel, 222
Conditional mean, modeling,
189–190
Conditional posterior distribution.
See Gamma
elicitation, 227–228
obtaining, 221
usage, 209–210, 219–222
Conditional value-at-risk (CVaR), 268, 274–275
deformation, 289–292
minimization, usage, 269
optimization, 276–277
usage, 280
Conditional variance parameters
posterior draws, histograms, 212e
vector, prior means (elicitation), 223
Conditional volatility dynamics,
regimes (existence), 211
Confidence
cases, 150–151
cross-sectional momentum
strategy (representation), 154
incorporation. See Asset pricing
models
interval/level, 148
relative views, effect
(comparison). See
High-confidence relative view
Conjugate prior distributions, 27–28. See also Beta
distribution
Constant relative risk aversion
(CRRA), 180n
Contemporaneous stock return, 175
Contour plot, usage. See Normal
distribution
Convergence
autocorrelations, impact, 74–75
diagnostics, 74–77
illustration, 81e
monitoring. See Cumsum
convergence monitoring;
Parallel chains convergence monitoring
Copulas. See Student’s t-copulas
estimation, 278–279
opinion pooling, 263–270
overview, 277–279
Corporate defaults, Poisson
distribution, 8
Coskewness, 257–258
definition, 257n
Country index, volatility, 153–154
Covariance
maximum likelihood, 98–99
return matrix, calculation,
172–173
returns, 160
Covariance matrix. See Asset
returns; Maximum likelihood
estimate; Proposal distribution
combined-sample MLE, 115
computation, 159–160
determinant, 58
estimation, 159–161
knowledge, 31
truncate MLE, 113–114
Criterion function, value
(computation), 198
Cross-sectional regression, 165
estimation, 287, 293
CRRA. See Constant relative risk
aversion
Cumsum convergence monitoring, 75
Cumulative distribution function
(CDF)
computation, 227, 278
inversion method, 228
usage. See Inverse-fitted
univariate CDFs
Cumulative excess return,
prediction, 178
Cumulative risk-free return, 181
Current assets/current liabilities
ratio, 86
Index

Current assets/net sales ratio, 86
CVaR. See Conditional value-at-risk

Data-generating process, 130
value, estimation. See True data-generating process
Data precision, 37
Debt/equity ratios, 189n
Decaying weights, usage, 160
Decision theory, loss functions (usage), 30n
Decomposition, usage, 186
Default, probability
 denotation, 82
 predictors, usage, 86
de Finetti, Bruno, 1n
Degrees-of-freedom parameter, 26, 107–108. See also Student’s t-distribution
 calibration, 205
 low value, 71
 posterior results, 219
 prior mean, setting, 211
Density function, term
 (usage/assumption), 7n
Dependent simulation, 63
Dependent variables
 Bernoulli distribution. See Binary dependent variable
 observations, 44–45
 prediction, 50–51
Diffuse improper prior, 46–48
 usage, 58–60
Diffuse priors. See Noninformative priors
Dirichlet distribution, 218n
 kernel, logarithm, 220
Dispersion parameter. See Scale parameter
Distributional assumptions. See Capital Asset Pricing Model
 moments, relationship, 259
 Distributional return assumptions, 248–255
 Dividend yield (D/P), 163, 175
 correlation, 176
 Earnings-to-price ratio (E/P), 163
 Efficiency, hypothesis, 174
 Efficient frontier, 94, 97. See also Mean-variance efficient frontier
certainty-equivalence setting, comparison, 107e
 illustration, 98e
 optimal portfolio, relationship, 105–106
Efficient Market Hypothesis (EMH), 162
Efficient Method of Moments (EMM), 196–198
 estimation, selection, 198
EGARCH. See Exponential GARCH
Elliptical distributions, 254, 273
EMH. See Efficient Market Hypothesis
EMM. See Efficient Method of Moments
Empirical Bayesian analysis, 28–30
Endogenous regime-switching models, 214
End-period portfolio value, utility, 96
E/P. See Earnings-to-price ratio
Equilibrium returns, 142–144
 nonnormality, impact, 270–272
Ergodic averages, standardization, 79–80
Error, source, 130
Errors-in-variables problem, 165
Estimation error, capture, 93
Estimation risk, 93
 consideration, 99
Euclidean norm, 147n
Evolutionary algorithms, 262n
Ex ante, reference, 121n
Ex ante efficiency, 166n
Excess returns, predictive
distribution (derivation), 177
Excess stock returns, potential
predictors, 131n–132n
Expected equilibrium risk
premiums, 142–143
Expected returns, 271
Expected return-standard deviation
pairs, 108
Explanatory variables
calculation, 83
company-specific characteristics/macroeconomic
variables, 82–83
Exponential distribution, mean, 205
Exponential GARCH (EGARCH),
189
Extra market information, 119
Extreme value distributions, 252
Factors (factor portfolios), 119
covariance matrix, estimates
(obtaining), 285
marginal contribution. See Total
risk
returns
covariance matrix, 283
prediction, 288
sensitivities, estimation, 120–121
Fama and French (FF) three-factor
model, 118
equivalence, 174
inference, 134
Federal Reserve Board, Regulation
T, 169
Filtered volatility estimate, 244
Financial time series, variability,
185
Frequentist statistics, frequentist
interpretation, 1
Full conditional log-posterior
distribution, expression, 239
Fundamental factor models, 282
Future excess returns, predictive
moments, 115–116
Gamma
conditional posterior
distribution, 208–209
distribution, 206
multiplicative property. See
Inverted gamma
distribution
function, 238
Gaussian distribution, 9
Gaussian linear state-space model,
defining, 231n
Gaussian stable distributions, 251n.
See also Non-Gaussian stable
distributions
Generalized autoregressive
heteroscedasticity (GARCH),
160–161. See also Exponential
GARCH
component, presence, 216
effect, 202
GARCH(1,1) estimation, MH
algorithm (usage), 208–211
GARCH(1,1) model
Bayesian estimation. See Simple
GARCH(1,1) model
estimation. See Markov
switching (MS)
GARCH(1,1) model
illustration. See Student’s t
GARCH(1,1) model
GARCH(1,1) process,
properties/estimation,
190–193
models. See Markov
regime-switching GARCH
models; Volatility
parameters, 192
Student’s t-distributed
disturbances, 203
SV models, distinguishing, 229
process, changes, 215
process persistence parameter,
191
Generalized error distribution
(GED), 193
Generalized hyperbolic distribution,
250n
Gibbs sampler, 67, 73–74, 203. See
also Griddy Gibbs sampler
posterior summary, 79e
usage, 261
possibility. See Griddy Gibbs
sampler
Global Industry Classification
Standard (GICS), usage,
294n
Global-minimum-variance
portfolio, return, 109–110
Greenspan, Alan, 4n
uncertainty, comment, 2–3
Griddy Gibbs sampler, 226–228
usage, possibility, 210
Half-life, 160
Heavy-tailed multifactor model,
estimation (illustration),
294–297
Heavy-tailed prior distributions,
elicitation, 27
Hessian computation, 70–71
Hessian matrix. See Inverse Hessian
matrix
Heuristic (nonquantitative)
allocation schemes, 141
Hidden Markov process, 219
High-confidence relative view,
low-confidence relative view
(effects, comparison),
151–152
Highest posterior density (HPD),
32n
intervals, 54n
High minus low (HML), 134
High-volatility state, 215–216
Holding period, 154
Hume, David, 1n
Hyperparameters (prior
parameters), 22–23
values
computation, 29
selection, 25n
IC. See Information coefficient
Identity matrix, 122
Importance sampling, 65–66
Independent chain M-H algorithm,
70–72
Independent simulation, 63
Independent variables,
observations, 44–45
matrices, 52
Inefficiency, hypothesis, 174
Inefficiency measures, 167n
distribution, 170e
illustration, 170–171
usage. See Capital Asset Pricing
Model
Information coefficient (IC), 158
Information ratio (IR), 158
Informative prior, 48–50
beliefs, introduction, 106
elicitation, 23. See also Binomial
probability; Location
parameter; Scale parameter
Interval bounds, determined, 32
Intervals, credibility, 54
Intrinsic time, 194n
Inverse-fitted univariate CDFs,
usage, 279
Inverse Hessian matrix, 86
evaluation. See Negative inverse
Hessian matrix
Inverted gamma distribution
multiplicative property,
234–235
product, 235–236
Inverted Wishart distribution,
41–42, 260
Inverted χ² distribution, 39–40
parameters, 48–49
Investment constraints, 156
efficiency, 169
Investment (holding) restrictions,
167
Investment horizon
relationship. See Predictability
return variance scales, 162
Investor, risk-return trade-off, 146
IR. See Information ratio

Jacquier, Polson, and Rossi (JPR)
estimation results. See New York
Stock Exchange
sampling scheme, usage, 237
James-Stein estimator, form, 108
Jeffreys, Harold, 12n
Jeffreys’ prior, 26
usage, 58–59
Joint density function, 7
Joint hypothesis problem, 163
Joint posterior density, 101
closed form, absence, 206
Joint posterior view distribution,
267
Joint predictive covariance,
137–138
matrix, 137
Joint predictive distribution,
sampling/simulation, 136
Joint predictive mean, 137
obtaining, 127
JPR. See Jacquier, Polson, and Rossi
Jump extension. See Simple SV
model
Jump size, regulation, 69

Kalman filter
algorithm, 244–246
integration. See Markov Chain
Monte Carlo
ease, 239–240
Kalman filtering, 244–246
prediction stage, 245
updating stage, 245–246
Kalman smoothing, 244
algorithm, 246
prediction stage, 245
updating stage, 245–246
Kronecker product, direct
multiplication operator, 59n
Kurtosis
increase, 186
value, 248–249

Laplace approximation, 89–90
Laplace method, 90
Last-period return observation, 190
Law of Large Numbers, 62
Least-squares estimate, 209
denotation, 125
variance, 239
Leverage effect, 189n
Likelihood function, 6–10,
122–123. See also Normal
distribution likelihood
function; Poisson distribution
likelihood function
example, 9e
formula, 7
representation, 192
usage, 204. See also Stochastic
volatility models
Index

Lindley, Dennis, 1n
Linear regression, semiconjugate prior (usage), 77–81
illustration, 78–81
Location parameter, 25n, 251, 254n
informative prior elicitation, 23–24
Logistic regression, 82–90
data, 87e
Log-likelihood function, 207
expression, 238
Log-normal distribution
kernel, 234
multiplicative property, 234–235
popularity, 234n
Log-posterior approximation, 85
distribution
expression. See Full conditional log-posterior distribution proposal distribution,
210–211
writing, 207–208
Log-volatility values, 233
Long-run variance (unconditional variance), 187. See also Returns
Long-short portfolio, 153
Loss functions, usage. See Decision theory
Lower partial moment (LPM), 273
Low-order multivariate autoregressive structure, 288
Low-volatility state, 215–216
Macroeconomic factor models, 282
Manager portfolio, squared active risk, 285
Marginal contribution of factor k to total risk (MCFTRk), 286
Marginal contribution of stock i to total risk (MCTRi), 286
Marginal posterior distributions, density curves, 90
Marginal posterior view distributions, 266
Market calmness, 186
capitalization positions, vector, 143–144
efficiency, 162
equilibrium, investor views (combination), 146–147
realizations, posterior distribution, 267–268
views, combination, 266
Market-implied information, 264–265
Market portfolio, 122
market-capitalization weights, 143
risk, 165
Market risk factor, 164–165
risky asset, sensitivity, 132
Markov chain
construction, 74–75
impact, 75
simulation, burn-in fraction, 75
Markov Chain Monte Carlo (MCMC) algorithm
Kalman filter, integration, 231n
usage. See Stochastic volatility models
approach, focus, 230
computations, 292
methodology, 216
methods, 64, 66–81
sampling algorithm, 240–241
simulations, 62n
algorithms, facilitation, 250
toolbox, 200–201
INDEX

Markov process. See Hidden Markov process
Markov property
analytic expression, 216
possession, 67n
Markov regime-switching GARCH models, 214–225
preliminaries, 215–217
prior distributional assumptions, 217–218
Markov switching (MS) GARCH(1,1) model
estimation, 218–222
parameters, sampling algorithm, 222
posterior regime probabilities, 225e
Markov switching (MS) model, 214
three-regime switching setup, 220
Markowitz, Harry, 1n
Maximum likelihood. See
Quasi-maximum likelihood method, 7
procedure, 240
Maximum likelihood estimate (MLE), 7, 105
computation, 111–112
covariance matrix, 71
determination, 71
feed-through effect, 113
usage, 46n
MCFTR\(k\). See Marginal contribution of factor \(k\) to total risk
MCMC. See Markov Chain Monte Carlo
MCSE. See Monte Carlo Standard Error
MCTR\(i\). See Marginal contribution of stock \(i\) to total risk
Mean, combined-sample MLE, 114–115
Mean/covariance
diffuse/improper priors, usage, 102–103
proper priors, usage, 103–105
Mean-reversion, 162
exhibition, 163
Mean-variance analysis, 92
grounding, 94
Mean-variance efficiency
Bayesian empirical tests, 166
tests, 164–166
Mean-variance efficient frontier, 97–99
Mean-variance frontier, 97
Mean-variance optimal portfolio, portfolio constraints, 99–100
Mean-variance optimization,
concave utility function
(assumption), 103n
Mean-variance portfolio optimization, 280
Mean vector, likelihood function, 102
Median, measurement, 23n
Methods of moments (MM), 196.
See also Efficient Method of Moments
Metropolis-Hastings (M-H) algorithm, 67–68, 203. See
also Block structure M-H algorithm; Independence chain M-H algorithm; Random walk M-H algorithm
posterior summary, 79e
usage. See Generalized autoregressive heteroscedasticity
Meucci model, 264
illustration, 269–270
MiniMax, 274
Mixing variables, 206
posterior results, 219
Mixture components, empirical determination, 240n
MLE. See Maximum likelihood estimate
MM. See Methods of moments
Model risk
sources, 130
treatment, 129n
Model uncertainty, 129–134
Modern Portfolio Theory (MPT), 92
Moment-matching procedure, 240
Moments, methods. See Methods of moments
Momentum, 153
Monte Carlo integration, 61–63
approximation procedure, 62
usefulness, 63
Monte Carlo simulation, 93
Monte Carlo Standard Error (MCSE), 62–63
MS. See Markov switching
MSCI Canadian returns/squared return innovations, 211
MSCI Canadian returns/VaR, 199e
MSCI country indexes
daily excess returns, 106
monthly returns, 100e
MSCI European country indexes, excess returns, 99
MSCI Germany, daily returns
(sample mean impact), 108
MSCI sample/equilibrium-implied information, 150e
MSCI World Index, 153
realized returns, 155e
realized volatilities, 155e
Multifactor equity risk models, 280
preliminaries, 281–282
Multifactor models
analysis, 114
Bayesian methods, 292–294
Multimove algorithm setting, filtered/smooth volatility estimates, 242e
Multi-move MCMC algorithm, usage. See Stochastic volatility models
Multinomial distribution, parameters (conjugate prior distribution), 218n
Multiplicative property. See Inverted gamma distribution; Log-normal distribution
Multivariate ARMA, 288
Multivariate asymmetric Student’s t-distribution, 264
Multivariate distributions, marginal distributions (form similarity), 265
Multivariate linear regression model, 56–60
estimation, 60
Multivariate normal distribution, 40
assumption, 57n, 101, 112
Multivariate normal likelihood, 260
Multivariate regression analysis, 125n
Multivariate regression estimation, 57
Multivariate skew-normal distribution, usage, 253
Multivariate statistical distributions, definitions, 38–42
Multivariate Student’s t-distribution, 40–41, 181
degrees of freedom, 103
parameter, 47
obtaining, 49–50
Multivariate theory, application, 254
Multivariate uniform distribution, 278

Natural conjugate priors, 28n scenario, posterior parameters, 30

Negative exponential utility function, usage, 180

Negative inverse Hessian matrix, evaluation, 86–87

Net income/total assets ratio, 86

New York Stock Exchange (NYSE) increasing-with-horizon allocation, 182–183 stocks, value-weighted index (JPR estimation), 236–237

Next-period benchmark returns, 126

Next-period excess return data, 101

Next-period returns covariance, 112

predictive density, mean/covariance, 113

Non-Gaussian distributions, assumptions. See Stocks

Non-Gaussian stable distributions, 251n

Noninformative diffuse prior, assertion, 52

Noninformative prior distributions, 25–27

Noninformative priors (vague priors // diffuse priors), 25

Nonnormality. See Asset returns; Returns presence, 193

Normal approximation. See Posterior density quality, visual evaluation, 87–88

Normal distribution, mixture, 249–250

Normal distribution, parameters likelihood function, 11e contour plot, usage, 11e writing, 179–180

Normal distribution likelihood function, 9–10

Normal likelihood, noninformative improper prior (combination), 36

Normally distributed random variable, consideration, 234n

Normal mean parameter. See Posterior trade-off

Normals continuous mixtures, 249 location-scale mixture, 249 scale mixture, 249

Normal variance, unbiased sample estimator, 31

Notation, explanation, 3–4

Null hypothesis, comparison, 33

Objective information, 146

Observation equation, 231n

Off-diagonal elements, nonzero characteristic, 56

OLS. See Ordinary least squares

One-month T-Bill, return, 170–171

One-period investment decisions, 120

One-step-ahead realization, 35

Optimal portfolio allocation, 148–152 positions, vector, 148–149 shrinkage, 110 weights, 100e computation, 127 views, 152e

Optimal weights, sensitivity, 109e

Optimized momentum strategy realized returns, 155e realized volatilities, 155e

Ordinary least squares (OLS)
estimates, 54
estimator, 48
method, usage, 46
regressions, 111
Over-underestimation error, 115
Parallel chains convergence
monitoring, 75–77
Parameter restrictions, 79n
Parameter uncertainty,
incorporation, 106, 292
Parameter vector
decomposition, 208
estimation, 197
posterior density function, 85
p-dimension integration/integrals,
84
Percentage contribution of stock i
to total risk (PTCR), 286
Percentage marginal contribution of
stock i to total risk (PMCTR), 292
Persistence measure, posterior
draws (histograms), 212e
Perturbed model, 121–122
PFCF. See Stock price to free cash
flow per share
PMCTR. See Percentage marginal
contribution of stock i to total
risk
Point prediction, 34–35
Poisson distribution
function, 9e
usage, 8n
Poisson distribution likelihood
function, 7–9
Poisson process, 8n
Portfolio
acceptable risk, 96
allocation, 141
Bayesian framework, 92
Bayesian setup, 112–113
construction, 98, 268
risk measures, usage, 273–275
expected return, LPM (ratio), 275
exposures, vector, 284
managers, views, 266
mean-variance efficiency, testing,
171
optimization, 112, 293. See also
Mean-variance portfolio
optimization
problem, 96
paradigm (Markowitz), 248
performance, 275
resampling, 93
risk, stock contribution, 291–292
skewness, 258
variance, measurement, 92
weights, 271
Portfolio selection, 94–100
nonnormality, impact, 255–256
problem
formulations, 95–97
solution, 180–182
relationship. See Predictive
distribution; Predictive
moments
Posterior density
approximations, 88e
curve, points (correspondence), 65
envelope, determination, 64
effects, 295e
logarithm, Taylor expansion,
84–85
normal approximation, 84–89
Posterior distribution, 54. See also
Benchmark parameters;
Capital Asset Pricing Model
computation, 169
conditions, 124–126
usage, 19–21, 206
Posterior inference, 30–34
 illustration, 53
Posterior information, 22
Posterior mean, 20
Posterior model probabilities, posterior parameter distributions (relationship), 132–133
Posterior moments, 262
Posterior odds (PO) ratio, 34
Posterior optimal allocations, 270e
Posterior probability, 2, 11
 computation, 33
Posterior simulation, 293–294
 algorithms, 63–81
 categories, 63
 regime path, drawing, 221
 illustration, 78–79
 posterior distribution, impact, 80e
Posterior trade-off, normal mean parameter (example), 35–37
Predictability, investment horizon (relationship), 182–183
Predictive covariance, 126–127
Predictive density, known (closed) form, 35n
Predictive distribution numerical simulation, 135–138
 portfolio selection, relationship, 126–127, 133–134
 sampling, 136–138
 writing, 135
Predictive inference, 22
 example, 53
 usage, 74
Predictive mean
 computation, 112
 weighted average, 104–105
Predictive moments, portfolio selection (relationship), 262
Price dynamics, 194n
Price-to-earnings-to-growth ratio, 282
Pricing model validity, quantification, 121
Prior beliefs, 118
 asset pricing models, relationship, 119–129
 preliminaries, 119–120
Prior densities, integration changes, 26
Prior distributions, 123–124, 131–132
 informativeness, 104
 un informativeness, 104
 usage, 205–206, 217–218
Prior information, 22–30
 translation process, 23
Prior optimal allocations, 270e
Prior parameter elicitation, 127–128
Prior precision, 37
Probability
 objectification, 12n
 subjectivist interpretation, 1
Probability density function, expression, 10
Proportionality constant, 64
symbol, usage, 3–4
Proposal density, 67
Proposal distribution, covariance matrix, 69
PTCR, See Percentage contribution of stock i to total risk
p-value, interpretation, 165
Quadratic utility function, 95
Quantitative Resources Group, model development, 119, 141
Quasi-maximum likelihood (QML), 196
Index

Ramsey, Frank, 1n
Randomness, source, 16
Random variable, 252. See also
 Bernoulli-distributed random variable
 transformation, 24n
 unconditional (marginal) distribution, 19
Random walk M-H algorithm, 68–70
 simplicity, 69
Recursive substitution, usage, 188
References, 298–309
Regime switching, 204
 GARCH models. See Markov regime-switching GARCH models
 models, 130, 232. See also
 Endogenous regime-switching models
 inclusion, 178
 parameter, deterministic permanent switch (introduction possibility), 214n
Regression coefficients
 posterior results, 219
 prior, assumption, 86–87
 vector, prior mean, 124
Regression disturbance, 43–44
Regression parameter
 normal prior, assumption, 205
 vector, 73
Rejection sampling, 64–65
 algorithm, example, 65e
Relative risk aversion, coefficient, 271
Residual return, computation, 154
Return dynamics equation, jump, 241–242
Return-generating process, 111
Return predictability, 162, 175–182
 posterior inference, 177–180
 predictive inference, 177–180
Returns
 autocorrelation, 191
 covariance matrix, 147–148
 distribution
 default assumption, 192–193
 stationarity, assumption, 178
 empirical features, 248n
 expressions, 204
 facts, 188–189, 195
 heavy-tailed characteristics, 247n
 heavy-tailedness, 229–230
 joint modeling, 254–255
 approaches, dichotomy, 265n
 long-run variance, 191
 nonnormality, 195. See also Asset returns
 normality
 absence, 247
 assumption, 271
 prediction, relationship. See Volatility
 predictive (co)skewness, 258
 scenario, generation, 287–292, 294
 stacking, 283
 unequal histories, 110–116
 volatility, 185–186
Reverse optimization, 271
Risk
 analysis, multifactor equity model (usage), 283–286
 decomposition, 285–286
 error, 130
 measures, 185n, 268
Risk-aversion parameter, interpretation, 143–144
Risk-free asset, allocation, 119
RiskMetrics Group, 198n
Risky asset
allocation, increase, 128–129
excess return, 121–122
sensitivity. See Market risk

Safety risk measures, 273
Sampling. See Importance sampling;
Rejection sampling
Savage, Leonard, 1n
Scaled Student’s \(t \)-distribution, 27
Scale matrix, 254n
Scale parameter (dispersion
parameter), 9–10, 26, 251
informative prior elicitation,
23–24
Scenario-based setting, risk
analysis, 288–289
Scenario generation, 279
Second-order Taylor expansion,
application, 89–90
Semiconjugate prior scenario, 77
Semistandard deviation,
measurement, 256n
Semistrong efficiency, 163
Sharpe ratio, 97, 255
Short series, long series dependence,
112
Shrinkage estimators, 108–110
Shrinkage intensity, 108
Simple GARCH(1,1) model
Bayesian estimation, 203–214
forecasting power/inaccuracy,
213
parameters, posterior means,
212e
Simple SV model
estimation, 195–198
jump extension, 241–243
Simulation-based methods,
196
Single-move algorithm, multimove
algorithm (comparison), 238e
Single-move MCMC algorithm,
usage. See Stochastic volatility
models
Single-move sampler, 230
Single-move SV model estimation,
posterior results, 236e
Size effect, 167
Skewness. See Portfolio
parameter, 251
Skew-normal distributions,
253–254, 259
usage. See Multivariate
skew-normal distribution
Slice sampler, 261n
Small-cap/small-BM portfolio,
return (variability), 55
Small minus big (SMB), 134
Smoothed volatility estimate, 244
Special purpose vehicle, 196–197
Split-normal distributions, 70n
Split-Student’s \(t \) distribution, 70n
Stability, index, 251
Stable distributions, 251–252. See
also Gaussian stable
distributions; Non-Gaussian
stable distributions
mixture-of-normals
representation. See
Symmetric stable distribution
scenario, factor daily returns
(posterior means), 296e
usage. See Black-Litterman
approach
Standard deviation, 10
STARR ratio, 275
State equation, 231n
State-space models
Bayesian treatment, 230
defining, See Gaussian linear
state-space model
State variable, 231n
Stationarity, 190–191. See also
Strict stationarity
assumption. See Returns
measure, 202
Stationary volatility distribution, 233n
Statistical analysis, usage, 1
Statistical factor models, 281–282
Stochastic volatility (SV) filtered
residuals, 200
Stochastic volatility (SV) models, 186, 202
Bayesian estimation, 229
estimation. See Simple SV model
multi-move MCMC algorithm, usage, 237–241
preliminaries, 230–232
prior/posterior distributions, 237–239
likelihood function, usage, 231–232
prior/posterior distributions, 232
selection, 200
single-move MCMC algorithm, usage, 232–237
usage, 194–198
Stock excess return, 175
Stock prices, irrational bubbles, 176
Stock price to free cash flow per
share (PFCF) ratio, example, 13
Stocks
beta, estimation, 164–165
daily returns, HLLM approach, 263
marginal contribution. See Total
risk returns, non-Gaussian
distributions (assumptions), 292
Stock-specific component, 290
Stock-specific return, 281
independence, 288
prediction, 288
Stock-specific risk component, 291
Strict stationarity, 191n
Structural parameters, vector, 196–197
Student’s t-copulas, 279
Student’s t-distribution, 27n
degrees-of-freedom parameter, 227n
heavy-tailed characteristic, 71n
normals representation, mixture, 206–208
preference, 70
quantile, degrees of freedom, 199
representation, 207
VaRα, obtaining, 272n
Student’s t GARCH(1,1) model,
illustration, 211–214
Student’s t MS GARCH(1,1) model
illustration, 222–225
parameters, posterior means, 224e
posterior parameter, 223–224
Subjective expected returns vector, 149–150
Subjective information, 264–265
Sufficient statistics, 29n
SV. See Stochastic volatility
Symmetric distribution, 24
Symmetric stable distribution,
mixture-of-normals
representation, 252n
Tail parameter, index, 251
Taylor expansion. See Posterior
density application. See Second-order
Taylor expansion
usage, 85n
Taylor series, 84n
Test statistic, realization, 33n
Three-factor model. See Fama and French three-factor model
Three-regime switching setup. See Markov switching model
Time-invariant behavior, assumption, 288
Time-varying behavior, assumption, 288
Time-varying conditional volatility, 186
Total risk factor, marginal contribution. See Marginal contribution of factor k to total risk stocks, marginal contribution. See Marginal contribution of stock i to total risk
Tracking error, 156, 285
Trade-by-trade consecutive price increases, 16–19
probability, scenarios (consideration), 17–18
True data-generating process, value (estimation), 197–198
Truncated MLE, usage, 114
Two-pass regression, 163
Two-step forward prediction, usage, 233
Unconditional distribution, 198
Unconditional predictive distribution, 181n
Unconditional variance. See Long-run variance
Unequal variance, 51–53
Univariate linear regression model, 43–56
example, 53–56
Univariate normal distribution, 39
Univariate regression model, Bayesian estimation, 45–53
Univariate statistical distributions, definitions, 38–42
Univariate Student’s t-distribution, 39
Unobserved volatility block simulation, 239–240
component-by-component simulation, 235
conditional distribution, 233–234
joint distribution, 238
simulation, 234–236
Utility, higher moments (usage), 258
Utility functions, usage, 95n
Utility maximization higher moments, usage, 256–263
likelihood/prior assumption/posterior distributions, 259–262
Vague priors. See Noninformative priors
Value-at-risk (VaR), 274. See also Conditional value-at-risk definition, 289
forecasting, 198–199
Value-weighted NYSE index, 176–177
VAR. See Vector autoregressive
Variance. See Unequal variance
computation, 159–160
overestimation, 51
weighted estimators, 160
Vector autoregressive (VAR), 176
setup, 183–184
Vectorized OLS estimator, 59
View matrix, 149–150
Views-implied expected returns, 151e
Views (view distributions), 265–266
combination. See Market
dependence structure, 267
Volatility. See Asymmetric volatility
clustering, 185–186, 195
usage, 188
distribution. See Stationary
volatility distribution
dynamics, expressions, 204
estimation, 213e
methods, usage, 292
forecasting, return prediction
(relationship), 243
forecasts, 214e
GARCH models, 187–193
logarithm, dynamics
(assumption), 230–231
models, 178
overview, 185
predictions, usage, 198–199
persistence, control, 194–195
preference, 256
process, variation (squared
coefficient), 236–237
updating expression, 187
variability, source, 229–230
Weak efficiency, 163
Weighting matrix, 198
Wishart distribution, 41. See
also Inverted Wishart
distribution
Within-model parameter
uncertainty, 14
Within-model uncertainty,
130–131
Within-sequence variation,
estimation, 76
Zero-investment view portfolios,
means, 144
Zero-mean random variable,
distribution, 69