Contents

Preface xv
About the Authors xvii

CHAPTER 1
Introduction 1
A Few Notes on Notation 3
Overview 4

CHAPTER 2
The Bayesian Paradigm 6
The Likelihood Function 6
The Poisson Distribution Likelihood Function 7
The Normal Distribution Likelihood Function 9
The Bayes’ Theorem 10
Bayes’ Theorem and Model Selection 14
Bayes’ Theorem and Classification 14
Bayesian Inference for the Binomial Probability 15
Summary 21

CHAPTER 3
Prior and Posterior Information, Predictive Inference 22
Prior Information 22
Informative Prior Elicitation 23
Noninformative Prior Distributions 25
Conjugate Prior Distributions 27
Empirical Bayesian Analysis 28
Posterior Inference 30
Posterior Point Estimates 30
Bayesian Intervals 32
Bayesian Hypothesis Comparison 32
Bayesian Predictive Inference 34
Illustration: Posterior Trade-off and the Normal Mean Parameter	35
Summary	37
Appendix: Definitions of Some Univariate and Multivariate Statistical Distributions	38
The Univariate Normal Distribution	39
The Univariate Student's t-Distribution	39
The Inverted χ^2 Distribution	39
The Multivariate Normal Distribution	40
The Multivariate Student's t-Distribution	40
The Wishart Distribution	41
The Inverted Wishart Distribution	41

CHAPTER 4

Bayesian Linear Regression Model 43

The Univariate Linear Regression Model 43

Bayesian Estimation of the Univariate Regression Model 45

Illustration: The Univariate Linear Regression Model 53

The Multivariate Linear Regression Model 56

Diffuse Improper Prior 58

Summary 60

CHAPTER 5

Bayesian Numerical Computation 61

Monte Carlo Integration 61

Algorithms for Posterior Simulation 63

Rejection Sampling 64

Importance Sampling 65

MCMC Methods 66

Linear Regression with Semiconjugate Prior 77

Approximation Methods: Logistic Regression 82

The Normal Approximation 84

The Laplace Approximation 89

Summary 90

CHAPTER 6

Bayesian Framework For Portfolio Allocation 92

Classical Portfolio Selection 94

Portfolio Selection Problem Formulations 95
CHAPTER 8
The Black-Litterman Portfolio Selection Framework 141

Preliminaries 142
Equilibrium Returns 142
Investor Views 144
Distributional Assumptions 144
Combining Market Equilibrium and Investor Views 146
The Choice of \(\tau \) and \(\Omega \) 147
The Optimal Portfolio Allocation 148
Illustration: Black-Litterman Optimal Allocation 149
Incorporating Trading Strategies into the Black-Litterman Model 153
Active Portfolio Management and the Black-Litterman Model 154
Views on Alpha and the Black-Litterman Model 157
Translating a Qualitative View into a Forecast for Alpha 158
Covariance Matrix Estimation 159
Summary 161

CHAPTER 9
Market Efficiency and Return Predictability 162

Tests of Mean-Variance Efficiency 164
Inefficiency Measures in Testing the CAPM 167
Distributional Assumptions and Posterior Distributions 168
Efficiency under Investment Constraints 169
Illustration: The Inefficiency Measure, \(\Delta^e \) 170
Testing the APT 171
Distributional Assumptions, Posterior and Predictive Distributions 172
Certainty Equivalent Returns 173
Return Predictability 175
Posterior and Predictive Inference 177
Solving the Portfolio Selection Problem 180
Illustration: Predictability and the Investment Horizon 182
Summary 183
Appendix: Vector Autoregressive Setup 183
Contents

CHAPTER 10

Volatility Models 185

- Garch Models of Volatility 187
- Stylized Facts about Returns 188
- Modeling the Conditional Mean 189
- Properties and Estimation of the GARCH(1,1) Process 190

Stochastic Volatility Models 194

- Stylized Facts about Returns 195
- Estimation of the Simple SV Model 195
- Illustration: Forecasting Value-at-Risk 198
- An Arch-Type Model or a Stochastic Volatility Model? 200
- Where Do Bayesian Methods Fit? 200

CHAPTER 11

Bayesian Estimation of ARCH-Type Volatility Models 202

- Bayesian Estimation of the Simple GARCH(1,1) Model 203
 - Distributional Setup 204
 - Mixture of Normals Representation of the Student’s t-Distribution 206
 - GARCH(1,1) Estimation Using the Metropolis-Hastings Algorithm 208
 - Illustration: Student’s t GARCH(1,1) Model 211

- Markov Regime-switching GARCH Models 214
 - Preliminaries 215
 - Prior Distributional Assumptions 217
 - Estimation of the MS GARCH(1,1) Model 218
 - Sampling Algorithm for the Parameters of the MS GARCH(1,1) Model 222
 - Illustration: Student’s t MS GARCH(1,1) Model 222

- Summary 225

Appendix: Griddy Gibbs Sampler 226

 - Drawing from the Conditional Posterior Distribution of ν 227

CHAPTER 12

Bayesian Estimation of Stochastic Volatility Models 229

- Preliminaries of SV Model Estimation 230
 - Likelihood Function 231

- The Single-Move MCMC Algorithm for SV Model Estimation 232
Prior and Posterior Distributions
Conditional Distribution of the Unobserved Volatility
Simulation of the Unobserved Volatility
Illustration
The Multimove MCMC Algorithm for SV Model Estimation
Prior and Posterior Distributions
Block Simulation of the Unobserved Volatility
Sampling Scheme
Illustration
Jump Extension of the Simple SV Model
Volatility Forecasting and Return Prediction
Summary
Appendix: Kalman Filtering and Smoothing
The Kalman Filter Algorithm
The Smoothing Algorithm

CHAPTER 13
Advanced Techniques for Bayesian Portfolio Selection

Distributional Return Assumptions Alternative to Normality
Mixtures of Normal Distributions
Asymmetric Student’s t-Distributions
Stable Distributions
Extreme Value Distributions
Skew-Normal Distributions
The Joint Modeling of Returns
Portfolio Selection in the Setting of Nonnormality:
Preliminaries
Maximization of Utility with Higher Moments
Coskewness
Utility with Higher Moments
Distributional Assumptions and Moments
Likelihood, Prior Assumptions, and Posterior
Distributions
Predictive Moments and Portfolio Selection
Illustration: HLLM’s Approach
Extending The Black-Litterman Approach: Copula Opinion
Pooling
Market-Implied and Subjective Information
Views and View Distributions
Combining the Market and the Views:The Marginal
Posterior View Distributions
Views Dependence Structure: The Joint Posterior View Distribution 267
Posterior Distribution of the Market Realizations 267
Portfolio Construction 268
Illustration: Meucci’s Approach 269
Extending The Black-Litterman Approach: Stable Distribution 270
Equilibrium Returns Under Nonnormality 270
Summary 272
APPENDIX A: Some Risk Measures Employed in Portfolio Construction 273
APPENDIX B: CVaR Optimization 276
APPENDIX C: A Brief Overview of Copulas 277

CHAPTER 14 Multifactor Equity Risk Models 280
Preliminaries 281
Statistical Factor Models 281
Macroeconomic Factor Models 282
Fundamental Factor Models 282
Risk Analysis Using a Multifactor Equity Model 283
Covariance Matrix Estimation 283
Risk Decomposition 285
Return Scenario Generation 287
Predicting the Factor and Stock-Specific Returns 288
Risk Analysis in a Scenario-Based Setting 288
Conditional Value-at-Risk Decomposition 289
Bayesian Methods for Multifactor Models 292
Cross-Sectional Regression Estimation 293
Posterior Simulations 293
Return Scenario Generation 294
Illustration 294
Summary 295

References 298

Index 311