The impetus for this book was a conversation I had with my friend, Dr. Jenq-Neng Hwang, during the 1996 ICASSP conference. When I asked why few applications were presented, Jenq-Neng replied that most professors do not have access to data, especially the physiologic data in which I am interested. Later that year, I saw an advertisement in *EMBS Magazine* soliciting book proposals and decided to write a book that could serve to bridge the gap between industrial medical instrumentation applications and academic system theory.

This text is divided into four parts. In Part I, classic and current filtering techniques for real-time applications are discussed. These include frequency-selective filters, the pseudorandom binary sequence, adaptive filters, time-frequency representations, and time-scale representations. In Part II, modeling techniques for real-time applications are discussed. These include the autoregressive moving average with exogenous input model, the artificial neural network model, and the fuzzy model. In Part III, linear and nonlinear compartmental models are discussed. These models have been applied to physiologic data such as metabolite and drug transport with uneven sampling intervals. In Part IV, algorithmic implementations and the need for more system theory in the medical instrumentation industry are highlighted.

RECOMMENDED READING STRATEGIES

This book is intended as a textbook for a system theory applications course, within the medical instrumentation course series of a biomedical engineering/bioengineering graduate program. It may also be used as a reference book for industrial medical instrumentation. The chapters are intentionally organized in groups of two chapters, with the first chapter describing a system theory technology, and the second chapter describing an industrial application of this technology. Although this organization is somewhat unorthodox, it is designed to sustain the interest of graduate students.

Each theory chapter contains a general overview of a system theory technology, which is intended as background material for the application chapter, rather than as a compre-
hensive review. Textbooks that may serve as references for each technology are recom-
manded at the end of each theory chapter. Each application chapter contains a history of
the highlighted medical instrument, summary of appropriate physiology, discussion of the
problem of interest and previous empirical solutions, and review of a solution that utilizes
the theory in the previous chapter. When a new term is first introduced, it is set in bold-
face, and defined in the Glossary. Depending on the reader’s background, it is recom-
mended that the chapters be read in the following order:

Biomedical engineering researchers and graduate students with system theory back-
ground:

 Chapters 1–18—original order

Medical instrumentation engineers:

 Chapter 18—summary chapter
 Even numbered chapters—application chapters
 Odd numbered chapters—background theories corresponding to applications of interest
 Chapter 17—optional; implementation chapter

Other biomedical engineering researchers and graduate students:

 Even numbered chapters—application chapters
 Odd numbered chapters—background theories corresponding to applications of interest
 Chapters 17–18—implementation chapters

Electrical engineering researchers and graduate students with system theory back-
ground:

 Even numbered chapters—background applications corresponding to theories of interest
 (except Chapters 14, 16)
 Chapters 17–18—implementation chapters
 Chapters 1, 3, 5, 7, 9, 11—optional; theory chapters
 Chapters 13–16—optional; contains advanced physiology and biochemistry

ACKNOWLEDGMENTS

These 18 chapters were written in 26 months from late 1998 to 2000, in the midst of
working full time in industry. I would like to thank my colleagues for reviewing groups of
chapters: Dr. Bill Barnes, Dr. Leon Cohen, Joe Elf, Dr. David Foster, Dr. Moritz Harten-
neck, Dr. Sandy Ng, Dr. Shankar Reddy, Dr. Alfredo Ruggeri, and Dr. Xiang Wang. My
Ph.D. advisor David Foster was especially supportive of this project. I would also like to
recognize these colleagues and corporations for sharing data used in chapter exercises:
Stuart Gallant of Tensys Corporation, Dr. Michael Schwartz, Dr. Masaru Sugimachi, the
SAAM Institute, and Welch Allyn Inc. Chapter 17 is dedicated to Stuart Gallant, in recog-
nition of his love of integer mathematics.

My friend Alan Davison served as the perfect editor for this project. In his own endear-
ing, anal-retentive fashion, he pointed out endless improvements that increased each
chapter’s readability and applicability.

I received incredible emotional support for this project from my coworkers at Vital-
Wave Corporation: Fred Bacher, Kurt Blessinger, Dave Eshbaugh, Simon Finburgh,
Mano Goharla’ee, and Kevin Woolf. My dear friends Dulce Capadocia and Maddy Ramirez also were extremely supportive during these lost years. My husband Larry encouraged this project and patiently endured its duration.

The following people were not directly involved, but influenced this text: To my undergraduate professors at Loyola Marymount University, thank you for providing such a strong engineering foundation upon which to build: Cliff d’Autremont, Dr. Joe Callanan, Dr. Tai-Wu Kao, Dr. John Page, Bob Ritter, Dr. Paul Rude. Thanks also to my supervisors at St. Mary Medical Center who gave me my first (student) experience as a biomedical engineer: Bob Ward and Chris Wentzel. I became a physiologist as well as engineer thanks to Ph.D. coadvisor, Dr. Dan Porte, Jr., with interpretative translation from Dr. Michael Schwartz and biomedical engineer/physiologist Dr. Jay Taborsky. Through my industrial mentors Dennis Hepp and Ron Bromfield, I have been given the rare industrial opportunity and freedom to explore physiologic mechanisms underlying various signals.

Thank you, IEEE Press editors John Griffin and Chrissy Kuhnen, for moving this manuscript toward publication. I welcome comments to this text at www.gailbaura.com.

GAIL D. BAURA

San Diego, 2001