Contents

Foreword xiii
Acknowledgements xv

1 Introduction 1
 1.1 Changing Electric Power Supply 1
 1.2 Advantages of GIL 4

2 History 7
 2.1 Transmission Network Development 7
 2.1.1 General 7
 2.1.2 Power Transmission Levels 8
 2.1.3 Long-Distance Power Transmission 11
 2.1.4 Current Ratings of Electric Transmission Networks 18
 2.1.5 Conclusion of Transmission Network Development 19
 2.2 Historical Development of GIL 20
 2.2.1 GIL 1st Generation 20
 2.2.2 GIL 2nd Generation 26
 2.2.3 World-Wide Experiences 36

3 Technology 39
 3.1 Gas Insulation 41
 3.1.1 Free Gas Space 42
 3.1.2 Insulators 42
 3.1.3 Gas-Tight Enclosure 44
 3.1.4 Insulating Gases 46
 3.1.4.1 Sulphur hexafluoride SF₆ 47
 3.1.4.2 N₂ 48
 3.1.4.3 N₂/SF₆ Gas Mixture 49
 3.2 Basic Design 65
 3.2.1 Overview 65
 3.2.2 Dielectric Dimensioning 68
 3.2.3 Thermal Dimensioning 68
 3.2.4 Insulation Coordination 68
Contents

3.2.5 Electrical Optimization 69
3.2.6 Transmission Network Studies 69
3.2.7 Gas Pressure Dimensions 70
3.2.8 High-Voltage Design Tests 70
3.2.9 Current Rating Design 72
3.2.10 Short-Circuit Rating Design 73
3.2.11 Internal Arc Design 74
3.2.12 Electromagnetic Current Forces Design 76
3.2.13 Mechanical Design 76
3.2.14 Integrated Overvoltage Protection 77
3.2.15 Particles 78
3.2.16 Thermal Design 79
 3.2.16.1 General 79
 3.2.16.2 Heat Transfer Inside the GIL 79
 3.2.16.3 Buried GIL 83
 3.2.16.4 Tunnel-Laid GIL 85
3.2.17 Seismic Design 86
 3.2.17.1 General 86
 3.2.17.2 Modelling of the GIL 86
 3.2.17.3 Parameters 86
 3.2.17.4 Permitted Stress 87
 3.2.17.5 Model of the Calculation 87
 3.2.17.6 Analysis Results 88
 3.2.17.7 Conclusion 91

3.3 Product Design 93
 3.3.1 Technical Data 93
 3.3.2 Conductor Pipe 95
 3.3.3 Enclosure Pipe 95
 3.3.4 Size of Gas Compartment 97
 3.3.5 Insulators 98
 3.3.6 Sliding Contacts 100
 3.3.7 Modular Design 100
 3.3.7.1 Straight Unit 100
 3.3.7.2 Angle Unit 101
 3.3.7.3 Disconnecting Unit 101
 3.3.7.4 Compensator Unit 102
 3.3.8 Overhead Line Connection 103
 3.3.9 Bending Radius 103
 3.3.10 Joint Technology for Conductor and Enclosure 104
 3.3.10.1 Flanged Joints 105
 3.3.10.2 Arc-Welded Joints 106
 3.3.10.3 Friction Stir-Welded Joints 107
 3.3.10.4 Ultrasonic Test 110
 3.3.11 Corrosion Protection 112
 3.3.11.1 Passive Corrosion Protection 114
 3.3.11.2 Active Corrosion Protection 115
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.12 On-Site Assembly Work</td>
<td>116</td>
</tr>
<tr>
<td>3.3.13 Monitoring</td>
<td>117</td>
</tr>
<tr>
<td>3.3.13.1 Gas Density Monitoring</td>
<td>119</td>
</tr>
<tr>
<td>3.3.13.2 Partial Discharge Monitoring</td>
<td>120</td>
</tr>
<tr>
<td>3.3.13.3 Arc Location System</td>
<td>121</td>
</tr>
<tr>
<td>3.4 Quality Control and Diagnostic Tools</td>
<td>123</td>
</tr>
<tr>
<td>3.4.1 Quality of Parts</td>
<td>124</td>
</tr>
<tr>
<td>3.4.2 Quality of Processes</td>
<td>124</td>
</tr>
<tr>
<td>3.4.3 Partial Discharge Detection</td>
<td>125</td>
</tr>
<tr>
<td>3.4.4 High-Voltage Testing On-Site</td>
<td>126</td>
</tr>
<tr>
<td>3.4.5 Conclusion of Quality Control</td>
<td>130</td>
</tr>
<tr>
<td>3.5 Planning Issues</td>
<td>131</td>
</tr>
<tr>
<td>3.5.1 Network Impact</td>
<td>131</td>
</tr>
<tr>
<td>3.5.1.1 Net Connecting Rules</td>
<td>131</td>
</tr>
<tr>
<td>3.5.1.2 Load Flow Calculation</td>
<td>132</td>
</tr>
<tr>
<td>3.5.2 Reliability</td>
<td>139</td>
</tr>
<tr>
<td>3.5.3 Grounding/Earthing</td>
<td>141</td>
</tr>
<tr>
<td>3.5.4 Safety</td>
<td>141</td>
</tr>
<tr>
<td>3.5.5 Environmental Limitations</td>
<td>143</td>
</tr>
<tr>
<td>3.5.6 Electric Phase Angle Compensation</td>
<td>145</td>
</tr>
<tr>
<td>3.5.7 Loadability and Capability Overload</td>
<td>145</td>
</tr>
<tr>
<td>3.5.7.1 General</td>
<td>145</td>
</tr>
<tr>
<td>3.5.7.2 Calculating Overload for Ambient Temperature</td>
<td>146</td>
</tr>
<tr>
<td>3.6 Specification Checklist</td>
<td>149</td>
</tr>
<tr>
<td>3.7 Laying Options</td>
<td>153</td>
</tr>
<tr>
<td>3.7.1 General</td>
<td>153</td>
</tr>
<tr>
<td>3.7.2 Above-Ground Installation</td>
<td>154</td>
</tr>
<tr>
<td>3.7.2.1 General</td>
<td>154</td>
</tr>
<tr>
<td>3.7.2.2 Corrosion Protection</td>
<td>155</td>
</tr>
<tr>
<td>3.7.2.3 Mechanical Stress</td>
<td>158</td>
</tr>
<tr>
<td>3.7.2.4 Thermal Stress</td>
<td>158</td>
</tr>
<tr>
<td>3.7.2.5 Evaluation of Above-Ground GIL</td>
<td>158</td>
</tr>
<tr>
<td>3.7.3 Trench-Laid</td>
<td>159</td>
</tr>
<tr>
<td>3.7.3.1 General</td>
<td>159</td>
</tr>
<tr>
<td>3.7.3.2 Corrosion Protection</td>
<td>160</td>
</tr>
<tr>
<td>3.7.3.3 Mechanical Stress</td>
<td>160</td>
</tr>
<tr>
<td>3.7.3.4 Thermal Stress</td>
<td>160</td>
</tr>
<tr>
<td>3.7.3.5 Evaluation</td>
<td>160</td>
</tr>
<tr>
<td>3.7.4 Tunnel-Laid</td>
<td>160</td>
</tr>
<tr>
<td>3.7.4.1 General</td>
<td>160</td>
</tr>
<tr>
<td>3.7.4.2 Open Trench-Laid Tunnel</td>
<td>161</td>
</tr>
<tr>
<td>3.7.4.3 Bored Tunnel</td>
<td>162</td>
</tr>
<tr>
<td>3.7.4.4 Corrosion Tunnel</td>
<td>165</td>
</tr>
</tbody>
</table>
3.7.4.5 Mechanical Stress 165
3.7.4.6 Thermal Stress 166
3.7.4.7 Evaluation 166
3.7.5 Directly Buried 166
3.7.5.1 General 166
3.7.5.2 Laying Process 167
3.7.5.3 Corrosion Protection 172
3.7.5.4 Mechanical Stress 175
3.7.5.5 Movement 179
3.7.5.6 Thermal Stress 181
3.7.6 Directional Boring 182

3.8 Long-Duration Testing 183
3.8.1 General 183
3.8.2 Tunnel Version 184
3.8.2.1 Test Set-up in a Tunnel 184
3.8.2.2 Test Programme 189
3.8.2.3 On-Site Laying in a Tunnel 189
3.8.2.4 On-Site Repair in a Tunnel 195
3.8.2.5 Test Results in a Tunnel 196
3.8.3 Directly Buried Version 197
3.8.3.1 Test Set-up Directly Buried 197
3.8.3.2 Test Programme Directly Buried 199
3.8.3.3 On-Site Laying Directly Buried 201
3.8.3.4 Repair Process Directly Buried 203
3.8.3.5 Thermal Calculations Directly Buried 205
3.8.3.6 Results of Long Duration Test Directly Buried 214
3.8.4 Long-Duration Test Results 215

3.9 Gas Handling 217
3.9.1 General 217
3.9.2 Gas Mixture Handling 217
3.9.3 Conclusion 219

3.10 Commissioning and On-Site Testing 221

4 System and Network 225
4.1 General 225
4.2 Line Constants of GIL 225
4.2.1 Theoretical Background 225
4.2.2 Resistance 226
4.2.3 Capacitance 226
4.2.4 Inductance 227
4.2.5 Impedance 227
4.2.6 Surge Impedance 227
4.2.7 Natural Power 227
Contents

4.3 Transmission Losses
 4.3.1 General
 4.3.2 GIL Losses
 4.3.3 Comparison with Other Transmission Systems
 4.3.4 Cooling or Ventilation

4.4 Operational Aspects
 4.4.1 General
 4.4.2 Availability

4.5 Ageing

4.6 Internal Arc Fault
 4.6.1 General
 4.6.2 Passive Protection
 4.6.3 Arc Location

4.7 Maintenance

4.8 Repair

4.9 Personnel Safety

4.10 Insulation Coordination
 4.10.1 General
 4.10.2 Overvoltage Stresses on Typical GIL Applications
 4.10.3 Insulation Coordination for GIL
 4.10.4 Required Test Voltages
 4.10.5 Verification of the Calculated Data

4.11 System Control
 4.11.1 Introduction
 4.11.2 Gas Density Monitoring
 4.11.3 Partial Discharge Measurement
 4.11.4 Temperature Measurement
 4.11.5 Overview of GIL Monitoring

5 Environmental Impact

5.1 General

5.2 Visual Impact

5.3 Electromagnetic Fields
 5.3.1 General
 5.3.2 Basic Theory
 5.3.3 Maximum Field Values
 5.3.4 Calculations
 5.3.5 Induced Reverse Enclosure Current
 5.3.6 EMF Measurements of GIL
 5.3.7 Direct Buried GIL

5.4 Gas Handling

5.5 Thermal Aspects

5.6 Recycling

5.7 Lifecycle Assessment

5.8 CO₂ Footprint
Contents

6 Economic Aspects 273
6.1 General 273
6.2 Material Cost 273
6.3 Assembly Cost 275
6.4 Transmission Losses 276
6.5 Cost Drivers 277

7 Applications 279
7.1 General 279
7.2 Examples 280
 7.2.1 Schluchsee, Germany, 1975 280
 7.2.2 Windhoek, Namibia, 1977 283
 7.2.3 Joshua Falls, USA, 1978 284
 7.2.4 Bowmanville, Canada, 1985–7 286
 7.2.5 Shin-Meika Tokai Line, Japan 289
 7.2.6 PALEXPO, Geneva, Switzerland, 2001 294
 7.2.7 Baxter Wilson Power Plant, USA, 2001 296
 7.2.8 Sai Noi, Thailand, 2002 297
 7.2.9 PP9, Saudi Arabia, 2004 300
 7.2.10 Cairo North, Egypt, 2005 301
 7.2.11 Hams Hall, Midlands, UK, 2005 303
 7.2.12 Huanghe Laxiwa, China, 2009 304
 7.2.13 Kelsterbach, Germany, 2010 305
 7.2.14 Xiluodu, China, 2011 308
 7.2.15 Jingping I, China, 2011 310
7.3 Future Application 312
 7.3.1 General 312
 7.3.2 Traffic Tunnels 312
 7.3.3 Roads and Highways 312
 7.3.4 Above-Ground and Cross-Country 314
7.4 Case Studies 314
 7.4.1 Case Study: Metropolitan Areas 315
 7.4.2 Case Study: London 317
 7.4.3 Case Study: Berlin Diagonal 318
 7.4.4 Case Study: Mountains 319
 7.4.5 Case Study: Sea 321
 7.4.6 GIL/Overhead Line Mixed Application 321

8 Comparison of Transmission Systems 323
8.1 General 323
8.2 GIL Features 323
8.3 Technical Comparison 324
 8.3.1 General 324
 8.3.2 Losses 324
 8.3.3 Magnetic Fields 327
 8.3.4 Voltage Rating 328
 8.3.5 Current Rating 328