Index

400 kV main technical data, 94
500 kV DC lines, 11
600 kV DC lines, 12
800 kV DC lines, 18

Above ground installations, 154
Acoustic bang location system, 58
Active corrosion protection, 115
Active corrosion protection of directly buried GIL, 174
Ageing, 235
Agricultural use, 145
Aluminum Pipes, 67
Angle elements, 153
Angle unit, 101
Applications, 279
Arc fault test parameters, 233
Arc location detection system, 236
Arc location system, 121
Arc welded joints, 104
Assembly cost, 275
Assembly tent, 30
Assembly tent for directly buried GIL, 201
Autoreclosure, 5, 232
Availability, 232

Bomanville, Canada, 286–7
Bored tunnel, 161
Boundary conditions, 207

Cabora Bassa, South African Development Zone, 11
Cairo North, Egypt, 299, 301
Capacitance, 226
Capacititance, 226
Case studies, 314
Case Study: Berlin Diagonal, 318
Case Study: London, 317
Case Study: Metropolitan areas, 315
Case Study: Mountains, 319
Case Study: Sea, 321
Changing electric power supply, 1
CO2 Footprint, 269
Commission tests, 205
Commissioning, 221
Commissioning test for directly buried GIL, 205
Compare accessibility, 330
Compare economics, 332
Compare esthetics, 332
Compare general technical features, 324
Compare GIL and cables, 324
Compare magnetic fields, 327
Compare maximum sizes, 330
Compare maximum weights, 330
Compare noises, 332
Compare non visibility, 332

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
Index

Compare overvoltages, 329
Compare short circuit ratings, 329
Compare site conditions, 329
Compare soft parameters, 331
Compare space of workshop on-site, 331
Compare temperature limits, 329
Compare transmission losses, 324
Compare transport roads, 331
Compare type of soil, 330
Compare voltage ratings, 328
Comparing GIS and GIL, 65
Comparison \(\text{N}_2/\text{SF}_6 \) and \(\text{SF}_6 \), 59
Comparison of directly buried and tunnel laid GIL, 200
Comparison of load cycles, 201
Comparison of test parameters, 200
Comparison of thermal calculations and measurements for directly buried GIL, 207
Comparison of Transmission Systems, 323
Comparison with other transmission systems, 229
Compensator unit, 102
Conditioning, 194
Conductor joint technology, 104
Conductor pipe, 95
Conical insulator, 43, 99
Continuous current adjustment, 148
Cooling, 231
Corrosion protection, 112, 155
Corrosion protection of directly buried GIL, 172
Corrosion protection of trench laid GIL, 160
Corrosion protection of tunnel laid GIL, 165
Cost differences, 277
Cost drives, 277
Cost of transmission Losses, 276
Cost share of GIL investment, 274
Cross directional stress of directly buried GIL, 175
Cross section parameters, 207
Crossing Systems, 155
Current rating, 66, 328
Current rating design, 72
Current ratings of electric transmission networks, 18
Cycle load of buried GIL, 208
Dense populations, 279
Diagnostic tools, 123
Dielectric dimensioning, 68
Dielectric type test values, 71, 198
Directional boring, 182
Directly buried, 33, 166
Directly laying in sea, 346
Disconnecting unit, 101
Earthing, 141
East-South Interconnector, India, 18
Economical Aspects, 273
EDF feasibility study, 27
Edison position, 7
Elastic bending, 153, 275
Electric ageing, 4
Electric phase angle compensation, 145
Electrification start, 7
Electromagnetic current forces design, 76
Electromagnetic fields, 5, 143, 254
EMF measurements of GIL in tunnel in PALEXPO, Swiss, 265
EMF measurements of GIL in tunnel in Schluchsee, 260
Enclosure joint technology, 104
Enclosure pip, 95
Energy change, 350
Engineering studies, 150
Environmental impact, 253
Environmental limitations, 143
Environmental protection, 279
Environmental restrictions, 151
Epoxi resin insulators, 42
European Union Feasibility Study, 336
Experiences with GIL, 33, 140
Features of GIL, 324
Fire load, 237
First generation GIL, 22
First project second generation, 28
Flanged joints, 104
Free gas space, 42
Free moving end of directly buried GIL, 177
Friction of directly buried enclosure pipe, 178
Friction stir welded joints, 107
Index

Gas density monitoring, 118
Gas handling, 217, 267
Gas insulated systems, 41
Gas insulation principles, 140
Gas mixture storage, 218
Gas mixture system, 218
Gas mixtures, 49
Gas pressure dimensioning, 70
Gas tight conical insulator, 44
Gas tight enclosure, 44
Gas tightness, 25
Gas tightness of the enclosure, 144
Gas tightness test on site, 222
Gas zone specification, 150
GIL features, 323
GIL technical parameters, 206
Grounding, 141
Gui-Guang I, China, 16

Hams Hall, UK, 301–2
Heat transfer in GIL, 79
Heating and cooling cycles, 189
High voltage testing on site, 126
High voltage design tests, 70
High-voltage on-site test values for 400 kV, 194
High-voltage type test values for 400 kV, 193
Highways with GIL, 312
Huanghe Laxiwa, China, 304

Impedance, 227
Induced reverse enclosure current, 259
Inductance, 227
Infrastructure, 279
Inspection tests, 151
Installed GIL worldwide, 280
Insulating gases, 46
Insulation capabilities, 49
Insulation coordination, 68, 238
Insulators, 98
Integrated surge arresters, 240
Intercontinental level, 10
Internal arc design, 74
Internal arc fault, 235
Internal arc pressure increase, 51
International level, 10
Itaipu, Brazil/Argentina, 12
Jingping I, China, 310
Jingping, China, 311
Joshua Falls, USA, 284, 286
Kelsterbach project, Germany, 34, 305, 308
Laying close to ground, 154
Laying high above ground, 155
Laying options, 153
Laying options of GIL, 154
Life cycle assessment, 269
Light detection, 57
Lighting strikes, 238
Line constants of GIL, 225
Line switching, 233
Load flow, 132
Loadability, 145
Local level, 8
Long distance DC transmission, 15
Long distance power transmission, 3
Long duration test cycles, 184
Long duration test programme, 189
Long duration test cycle on directly buried version, 198
Long duration test of tunnel version, 184
Long duration test on directly buried version, 197
Long duration test programme on directly buried version, 199
Long duration tests, 183
Long-duration test data of tunnel laid GIL, 186
Long-duration test requirements, 247
Longitudinal stress of directly buried GIL, 176
Lost weld ring, 109
Low transmission losses, 4
Maintenance, 236
Material cost, 273
Maximum field values, 257
Maximum voltage ratings, 328
Measuring Equipment, 52
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical design, 76</td>
<td></td>
</tr>
<tr>
<td>Mechanical solid, 153</td>
<td></td>
</tr>
<tr>
<td>Mechanical stress of above ground installation, 158</td>
<td></td>
</tr>
<tr>
<td>Mechanical stress of directly buried GIL, 175</td>
<td></td>
</tr>
<tr>
<td>Mechanical stress of trench laid GIL, 160</td>
<td></td>
</tr>
<tr>
<td>Mechanical stress of tunnel laid GIL, 165</td>
<td></td>
</tr>
<tr>
<td>Modular design, 100</td>
<td></td>
</tr>
<tr>
<td>Moisture, 51</td>
<td></td>
</tr>
<tr>
<td>Monitoring, 117</td>
<td></td>
</tr>
<tr>
<td>Monitoring data transmission, 150</td>
<td></td>
</tr>
<tr>
<td>Monitoring of gas density, 247</td>
<td></td>
</tr>
<tr>
<td>Monitoring of partial discharge, 248</td>
<td></td>
</tr>
<tr>
<td>Monitoring of temperature, 248</td>
<td></td>
</tr>
<tr>
<td>Monitoring system for data handling, 248</td>
<td></td>
</tr>
<tr>
<td>Movement of directly buried enclosure pipe, 179</td>
<td></td>
</tr>
<tr>
<td>N2/SF6 gas mixture, 67</td>
<td></td>
</tr>
<tr>
<td>N2/SF6 gas mixture handling, 217</td>
<td></td>
</tr>
<tr>
<td>National level, 10</td>
<td></td>
</tr>
<tr>
<td>Natural power, 227–8</td>
<td></td>
</tr>
<tr>
<td>Net connecting rules, 131</td>
<td></td>
</tr>
<tr>
<td>Network, 225</td>
<td></td>
</tr>
<tr>
<td>Network impact, 131</td>
<td></td>
</tr>
<tr>
<td>Network planning, 131</td>
<td></td>
</tr>
<tr>
<td>Network studies, 69</td>
<td></td>
</tr>
<tr>
<td>Next generation technology, 346</td>
<td></td>
</tr>
<tr>
<td>Nitrogen (N2), 48</td>
<td></td>
</tr>
<tr>
<td>No moving parts, 141</td>
<td></td>
</tr>
<tr>
<td>Non-corrosive, 141</td>
<td></td>
</tr>
<tr>
<td>Normalized properties, 50</td>
<td></td>
</tr>
<tr>
<td>Offshore collecting platform, Lillegrund, Denmark, 337</td>
<td></td>
</tr>
<tr>
<td>Offshore environment, 346</td>
<td></td>
</tr>
<tr>
<td>Offshore wind energy in Europe, 339</td>
<td></td>
</tr>
<tr>
<td>Offshore wind farm capacities, 339</td>
<td></td>
</tr>
<tr>
<td>Offshore wind farm capacities in North Sea, 339</td>
<td></td>
</tr>
<tr>
<td>Offshore wind farm connection, 335</td>
<td></td>
</tr>
<tr>
<td>On-site repair, 195</td>
<td></td>
</tr>
<tr>
<td>On-site test for commissioning, 223</td>
<td></td>
</tr>
<tr>
<td>On-site assembly, 116</td>
<td></td>
</tr>
<tr>
<td>On-site gas handling for tunnel laid GIL, 192</td>
<td></td>
</tr>
<tr>
<td>On-site high voltage tests for tunnel laid GIL, 192</td>
<td></td>
</tr>
<tr>
<td>On-site high-voltage test values for 420 kV GIL, 222</td>
<td></td>
</tr>
<tr>
<td>On-site laying in a tunnel, 189</td>
<td></td>
</tr>
<tr>
<td>On-site laying of directly buried GIL, 201</td>
<td></td>
</tr>
<tr>
<td>On-site pre-assembly for tunnel laid GIL, 192</td>
<td></td>
</tr>
<tr>
<td>On-site test equipment, 221</td>
<td></td>
</tr>
<tr>
<td>On-site tests for commissioning, 223</td>
<td></td>
</tr>
<tr>
<td>On-site welding tent for tunnel laid GIL, 190</td>
<td></td>
</tr>
<tr>
<td>Open trench laid tunnel, 161</td>
<td></td>
</tr>
<tr>
<td>Operation aspects, 232</td>
<td></td>
</tr>
<tr>
<td>Operational safety, 233</td>
<td></td>
</tr>
<tr>
<td>Orbital welding, 31</td>
<td></td>
</tr>
<tr>
<td>Orbital welding joints, 67</td>
<td></td>
</tr>
<tr>
<td>Orbital welding of enclosure, 45</td>
<td></td>
</tr>
<tr>
<td>Overload, 145</td>
<td></td>
</tr>
<tr>
<td>Overload case for directly buried GIL, 211</td>
<td></td>
</tr>
<tr>
<td>Overload for ambient temperature, 146</td>
<td></td>
</tr>
<tr>
<td>Overvoltage protection, 23, 77</td>
<td></td>
</tr>
<tr>
<td>Overvoltage protection, 23</td>
<td></td>
</tr>
<tr>
<td>Overvoltage stresses, 238</td>
<td></td>
</tr>
<tr>
<td>Overvoltages, 66</td>
<td></td>
</tr>
<tr>
<td>Pacific Inter Tie, USA, 13</td>
<td></td>
</tr>
<tr>
<td>PALEXPO project, 28</td>
<td></td>
</tr>
<tr>
<td>PALEXPO, Switzerland, 294</td>
<td></td>
</tr>
<tr>
<td>Partial discharge detection, 125</td>
<td></td>
</tr>
<tr>
<td>Partial discharge monitoring, 119</td>
<td></td>
</tr>
<tr>
<td>Particles, 78</td>
<td></td>
</tr>
<tr>
<td>Passive corrosion protection, 114</td>
<td></td>
</tr>
<tr>
<td>Passive corrosion protection of directly buried GIL, 173</td>
<td></td>
</tr>
<tr>
<td>Passive protection, 235</td>
<td></td>
</tr>
<tr>
<td>Personnel safety, 237</td>
<td></td>
</tr>
<tr>
<td>Physical parameters, 326</td>
<td></td>
</tr>
<tr>
<td>Pipe in pipe in pipe system, 346</td>
<td></td>
</tr>
<tr>
<td>Pipeline laying process, 167</td>
<td></td>
</tr>
<tr>
<td>Post type insulator, 43</td>
<td></td>
</tr>
<tr>
<td>Post-type insulators, 98</td>
<td></td>
</tr>
<tr>
<td>Power rating, 278</td>
<td></td>
</tr>
<tr>
<td>Power transmission levels, 8–9</td>
<td></td>
</tr>
<tr>
<td>Power Transmission Pipeline (PTPTM), 335</td>
<td></td>
</tr>
<tr>
<td>PP9 Project, Saudi Arabia, 299</td>
<td></td>
</tr>
<tr>
<td>Practically no ageing, 196</td>
<td></td>
</tr>
</tbody>
</table>
Index

Pressure test on site, 222
Project deliverables, 151
Prototype for type tests, 53
Prototype second generation, 26
PTP™ immersed tunnel, 343
PTP™ intermediate shaft, 345
PTP™ landing shaft, 345
PTP™ laying technique, 343
PTP™ offshore construction, 343
PTP™ onland construction, 343
PTP™ timeframe to completion, 345
PTP™ tunnel construction, 343
Pumping storage power plant, 22

Quality control, 123
Quality of parts, 124
Quality of processes, 124

Rated withstand voltages, 52
Reactive power compensation, 139
Recycling, 268
Regenerative energy, 1
Regional level, 8
Reliability, 139
Reliability of gas N2/SF6 gas mixture, 196
Repair of GIL, 237
Repair process for directly buried GIL, 203
Resistance, 226
Result of long duration test of directly buried GIL, 214
Results of long duration tests, 215
Results of type tests, 215
Roads with GIL, 312
Route Planning, 149, 278
Rules for workers, 276

Safety, 141
Sai Noi Project, Thailand, 297, 300
Schluchsee project, Germany, 23, 280, 283
Second generation GIL, 26
Secondary equipment for directly buried GIL, 205
Seismic Design, 86
Shaft for directly buried GIL, 202
Shin-Meika Tokai Line, Japan, 289

Short-circuit rating design, 73
Short-circuit withstand test values, 199
Short-circuit currents, 233
Site assembly, 278
Site conditions, 149
Site conditions for handling, 276
Site logistic studies, 150
Size of gas compartment, 97
Sliding contact, 100
Sliding contact system, 67
Specification checklist, 149
Spiral welded pipe manufacturing, 278
Standards, 151
Straight unit, 100
Sulphurhexathuride (SF6), 47
Super grid, 20
Surge arresters, 26
Surge impedance, 227–8
System, 225
System control, 247

Technical parameter, 68
Temperature of the enclosure, 143
Tesla position, 7
Test Procedures, 56
Test voltage coordination, 243
Thermal aging, 5
Thermal aspects, 267
Thermal calculations for directly buried GIL, 205
Thermal design, 79
Thermal dimensioning, 68
Thermal stress of above ground installation, 158
Thermal stress of directly buried GIL, 181
Thermal stress of trench laid GIL, 160
Thermal stress of tunnel laid GIL, 166
Touch voltage, 237
Traffic tunnels with GIL, 312
Transient overloading, 148
Transient overvoltage stress at 1 km, 241
Transient overvoltage stress at 10 km, 242
Transient overvoltage stress at 100 km, 243
Transmission losses, 228–9, 325
Transmission network development, 8
Transmission systems technical data, 230
<table>
<thead>
<tr>
<th>Transport length, 275</th>
<th>Ventilation, 231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trench for directly buried GIL, 201</td>
<td>Verification tests, 52</td>
</tr>
<tr>
<td>Trench laid GIL, 159</td>
<td>Visibility, 144</td>
</tr>
<tr>
<td>Tunnel laid, 160</td>
<td>Visual impact, 253</td>
</tr>
<tr>
<td>Tunnel laid GIL, 30</td>
<td>Voltage levels, 40</td>
</tr>
<tr>
<td>UHF partial discharge detection, 194</td>
<td>Weld testing, 110</td>
</tr>
<tr>
<td>Ultra high voltage, 20</td>
<td>Windhoek, Namibia, 283</td>
</tr>
<tr>
<td>Ultrasonic test, 110</td>
<td>Worker knowledge, 278</td>
</tr>
<tr>
<td>Under road laying, 314</td>
<td>Working conditions, 276</td>
</tr>
<tr>
<td>Under sea tunnel system, 339</td>
<td></td>
</tr>
<tr>
<td>Underground shaft locations, 150</td>
<td>Xiluodu, China, 308–9</td>
</tr>
</tbody>
</table>