Index

Abstraction, 14
Advanced trading strategies with
SAPE
Black-Scholes model, 290–292
large cap hedge strategy, 219
large cap long only strategy, 217–219
long short strategy, 219–221
potential assets under management, 219
summary, 221
Algorithms (algos)
computer algo development, 248–256
computer algos for finding, 61–63
demonstration of loss aversion in option pricing, 57–59
Java programming, algo jump-starting with, 266–273
PHP programming for algo development, 256–266
and portfolio management with SAPE, 222
for sentiment asset pricing engine (SAPE), effectiveness of, 190–191
technology infrastructure for algo creation, 245–277
Algorithms (algos) creation for high-frequency trading
efficient portfolio frontier, 294–296
flex user interface, 286–290
Monte Carlo simulation, 293–294
net present value (NPV) calculation, 284–286
probability from z scores, 279–281
Sharpe ratio, 282–284
signal detection theory (SDT), 296–298
volatility calculation with ARCH formula, 292–293
z scores from probability, 281–282
summary, 298
Alternative investment tools of macro investor sentiment
about, 194–197
development process, 197–198
web system contributions, 199
web system functions, 199
American options, 231–232
Anchor competition, 162–164
Anchor competition study, 166–169
conclusion, 169
design, 167
discussion and analysis, 168
participants, 166–167
results, 167–168
Anchor prices and double log law, 177–178
Anchoring. See also arbitrary anchoring effect; arbitrary anchoring on inertia equity study and uncertainty, 71–72
of the value of endowment effect, 155–156
Anchoring effect limits, 155–156
Anchoring effects, 154–155
Anchoring price and the locus effect, 48
Arbitrage and hedging strategy evaluation, 212–213
Arbitrary anchoring effect
boundaries of, 176–177
robustness of, 176
Arbitrary anchoring on inertia equity study
collection, 166
design, 164–165
discussion and analysis, 165–166
participants, 164
results, 165
Arrays
converting an arraylist, 273
element deletion, 262
extreme values, 264
iterating, 262
merging, 263
searching, 263
into strings, 263
using, 261
Arrays and arraylist data storage, 273
Base conversion, 260
Basic strategy, 215
Bayesian theorem, new growth function, 124–125
Behavioral economics models on fund switching and reference prices
arbitrary anchoring on inertia equity, 164–166
behavioral factors that affect fund switching, 152–157
inertia equity, theory and production, 157–164
Visual Funds for fund switching, 151–152
summary, 179
Behavioral economics models on loss aversion, 41–55
anchoring price and the locus effect, 48
assumption study, 51–53
future research, 54–55
locus effect on inertia equity study, 49–51
self-other asymmetry and loss aversion, 45–46
theoretical implications, 53–54
theory and hypothesis, 45–48
summary, 55
Behavioral factors that affect fund switching
about, 152–153
anchoring effect limits, 155–156
anchoring effects, 154–155
anchoring the value of endowment effect, 155–156
endowment effect, 153–154
Black-Scholes model, 15, 65, 85, 186, 238–239, 290–292
Brand switching, 153, 175–176
Breakeven analysis, 216–217
C++ programming, 273
Call options, 58–60, 186, 232–236, 238.
See also American options; European options
Choice reversal, 70
CLV equation and CE equation of RLZ model, 120–121
Computer algo development, 248–256
Java, appearance of, 253–254
Java, object-oriented features of, 250–252
PHP application development, 254–256
PHP programming for algo development, 256–266
programming languages, 250
Consumer confidence, 97
Correlations and regression model, 102–106
correlations, examination of, 104
discussion, 106
empirical hypothesis, 103
methods of, 103–104
multiple regression analysis, 104–106
Cost analysis, 216
Credit default swaps, 228
Customer equity, 160
Customer retention, 119
Customer retention rate, 130
Index

Date and time, 260–261
Dedicated web server setup, 246–248
Derivatives. See also options
 about, 227–228
 behavioral economics, behavioral
 investing based on, 243–244
 Black-Scholes model as special case
 of binomial model, 237
 credit default swaps, 230–231
 forwards and futures, 240–241
 implied volatility, 238
 interest rate swap pricing with
 prospect theory, 241–243
 mortgage-backed securities, 229–230
 options, benefits of, 234
 options, financial instruments for
 writing, 236–237
 options, profiting with, 234–235
 options and option values, 231–234
 volatility over time, 239–240
 volatility smile, 238–239
 summary, 244
Detection models for risk propensity,
 117–149
Development environment, 267
Double log law, anchor prices and,
 177–178
Double log law study
 alternative models, 171–173
 background, 169–170
 conclusion, 173–174
 data, 171
 discussion, 174–179
 hypothesis, 170
 results, 171
Dropping table, 275

Efficient portfolio frontier, 294–296
Endowment effect
 anchoring the value of, 155–156
 behavioral factors that affect fund
 switching, 153–154
 in brand switching, 175–176
 inertia equity to assess, 174–175
 inertia equity to assess value of,
 160–162
 to model brand switching, 158–160
European options, 231–232, 238, 298
Existing revenue models using
 high-frequency trading, 8–9
Explicit components, 88
Explicit consumer decision theory
 consumer confidence, implicit
 components of, 97
 consumer constructs and financial
 metrics, 98
 ICD theory, 94–96
 ICD theory, theoretical foundation
 of, 96
 implicit consumer confidence ratios,
 99–102
 stock returns, 98–99
 stock returns, implicit investment
 decisions underlying, 97–98
Exponents, 260
Extended hedging strategy, 207–212
Fechner's law, 170, 172, 173
Flex programming, 274
Flex user interface, 286–290
Floating point numbers, 259, 271
Functions
 arguments and results, 265
 global variables inside, 266
 use of, 264
Fund identification, 207
Fund performance analysis, 146
Fund selection, 215–216
Fund strategy, 215
Fund switching
 behavioral economics models on,
 151–179
 behavioral factors that affect,
 152–157
 Visual Funds for, 151–152
Future data, 203
Greenspan effect, 99
Growth function
 MATLAB to draw, 125–126
 new, and Bayesian theorem,
 124–125
 prediction and implication, 126–127
Guessing components, 89
Hash table vs. hashmap, 273
Hedging strategies, 213
High-frequency trading. See also
 origins of high-frequency trading
categorization of operations, 9–10
definition of, 3–5
eexisting revenue models, 8–9
importance of, 5–6
and investment management, 32–33
and technology, 222–223
technology inventions, 34
ultimate goals for models and
 financial inventions, 34–37
U.S. firms, 6–7
summary, 10–11, 37
High-frequency trading, history and
future
 with investment management,
29–37
 investment management and
 financial institutions, 31–32
 revenue models in future, 30–31
High-frequency trading models
and existing revenue models, 3–11
new, 225–226
Hindsight bias, 132
Hyperbolic absolute risk aversion
 (HAFRA), 136
Implicit components, 87–88
Implicit consumer decision (ICD)
 measures
 interpretation of MDP model, 93–94
 MDP model, 92
 transformation to MDP model,
 92–93
Implicit consumer decision (ICD)
 theory contributions
 behavioral finance with aggregate
 perspective, 113–114
 consumer decision making, implicit
 components, 111–112
 consumer sentiment and financial
 performance, 112–113
Implicit investor sentiment, 104
Implicit memory, 87–88, 134
Implicit utility derivation, 131–139
 implicit utility function, 136–139
 investor rating data into observed
 frequency, 135–136
 MDP model equations, 134
Inertia equity
 arbitrary anchoring on, 164–166
 to assess endowment effect, 174–175
 investment implications, 178
Inertia equity, theory and production
 anchor competition accounts for,
162–164
 to assess value of endowment
effect, 160–162
 endowment effects to model brand
 switching, 158–160
Inertia ratio, 169
Inertia value, 158
Investing revenue model
 abstraction in investing and trading,
14–15
 common investing vehicles, 15–17
Investor sentiment, 194–199
Irrational choice, 74–76
Java programming, algo jump-starting
 with
 about, 266–267
 arrays, converting an arraylist into,
273
 arrays and arraylist, data storage
 from, 273
 development environment, 267
 floating numbers, rounding, 271
 hash table vs. hashmap, 273
 primitive numbers, integer object
 conversion, 271
 random number generation, 271–272
 sentences into words, 269
 strings, assembly of, 269–270
 strings, blank removal of, 270
 strings, controlling cases of, 270
 strings, data object creation from,
273
 strings, validity check of, 270–271
 substring extraction, 268–269
Index

Likeability rating data into observed frequencies
implicit process properties, 141–143
implicit utility function, 140
implicit utility function properties, 142–143
value functions properties, 140

Locus effect, 41–45
Log inertia equity, 170
Logarithms, 259
Loss aversion. See also behavioral economics models on loss aversion
definition of, 41
irrational choice and, 75–76

Loss aversion in option pricing
algo (algorithm) demonstration of, 57–59
Black-Scholes formula, 63–64
computer algos for finding, 61–63
visualization of, 59–61
summary, 63

Managerial decisions, 130
Market neutrality, 219
MATLAB, 125–126
Modern portfolio theory (MPT), 16, 182, 186–187, 201, 203, 283
Money formatting, 260
Monte Carlo simulation, 293–294
Mortgage-backed securities, 228

MPT model to decompose
brand-switching matrix, 121–123
Multinomial decision process (MDP) model, 89–94
ICD measures, 92
ICD measures, interpretation of, 93–94
ICD measures, transformation to, 92–93
Multinomial models and detection models
fund performance analysis, 146
implicit utility derivatives, 131–139
likeability rating data into observed frequencies, 140–143
for risk propensity, 117–149
risk propensity definition, 148–149
risk propensity of SDT, 147–148
signal detection theory (SDT), 143–146
value at risk analysis, 147–148

Multinomial models for equity returns
about, 85–87
affective components, 88–89
correlations and regression model, 102–106
empirical approaches, 102
explicit components, 88
explicit consumer decision theory, 94–102
guessing components, 89
ICD theory contributions, 111–114
implicit components, 87–88
literature review, 87–89
MDP model, 89–94
structural equations model, 106–111
summary, 115

Multinomial models for retail investor growth
about, 117–119
Bayesian theorem, new growth function with, 124–125
CLV equation and CE equation of RLZ model, 120–121
growth function, MATLAB to draw, 125–126
growth function, prediction and implication, 126–127
managerial decisions, 130
MPT model to decompose
brand-switching matrix, 121–123
new growth development, 119–129
peak analysis, 127
peak growth rate, 127
retention rate and market share, 127–129
theoretical implications, 129
Multinomial processing tree model, 89–94
NBA (National Basketball Association)
 event and uncertainty account
 irrational choice and choice
 anomalies, 72–75
 irrational choice and loss aversion,
 75–76
 summary, 75–76
Net present value (NPV) calculation,
 284–286
New growth development, 119–129
Non-parametric SDT, 145–146
Option pricing. See also loss aversion
 in option pricing
 anchoring and uncertainty, 71–72
 controlled offline data, 77–80
 general discussion, 80–82
 managerial implications, 81–82
 NBA event, 66–67
 NBA event and uncertainty account,
 72–76
 option size expansion, 65–83
 procedure and choice reversal, 70
 switchers, 71
 theoretical analysis, 69
 theoretical implications, 80–81
 web data, 67–69
 summary, 82–83
Options
 American options, 231–232
 benefits of derivatives, 234
 European options, 231–232, 238, 298
 financial instruments for writing
 derivatives, 236–237
 and option values, 231–234
 profiting with derivatives, 234–235
Origins of high-frequency trading
 about, 13–14
 back-office revenue model, 20
 cash management revenue model, 19
 investing revenue model, 14–17
 investment banking revenue model,
 17–18
 market making revenue model, 18
 merger and acquisition revenue
 model, 20
 new revenue model creation, 21–22
 personal success drivers, 22–26
 trading revenue model, 18–19
 venture capital revenue model,
 20–21
 summary T, 27
 OTC derivatives, 226, 227
 Ownership bias, 176
 Passing value by reference, 264–265
 Peak analysis, 127
 Peak growth rate, 127
 Personal success drivers, 22–26
 PHP and HTML, 257
 PHP file location, 257
 PHP files on web browsers, 257–258
 PHP programming for algo
 development, 256–266
 arrays, element deletion, 262
 arrays, extreme values in, 264
 arrays, iterating through, 262
 arrays, merging, 263
 arrays, searching in, 263
 arrays, using, 261
 arrays into strings, 263
 base conversion, 260
 date and time, 260–261
 exponents, 260
 floating point numbers, 259
 functions, arguments and results,
 265
 functions, global variables inside of,
 266
 functions, use of, 264
 logarithms, 259
 money formatting, 260
 passing value by reference, 264–265
 PHP and HTML, 257
 PHP file location, 257
 PHP files on web browsers,
 257–258
 random number creation, 259
 substrings, extracting, 258
 substrings, locating, 258
 variables, checking, 259
 Portfolio management with SAPE
 algos, 222
 Preference bias indicator, 145
Index

Primitive numbers, integer object conversion, 271
Probability from z scores, 279–281
Program trading, 29
Psychophysics laws, 170, 177
Put options, 4, 58, 61, 186, 207, 213, 232–237. See also American options; European options

Random number creation, 259
Random number generation, 271–272
Records, updating, 276
Reference prices, 151–179
Research using signal detection theory (SDT), 179
Retention rate and market share, 127–129
Revenue models
 back-office, 20
 cash management, 19
 creation of new, 21–22
 existing, using high-frequency trading, 3–11
 future, 30–31
 investing, 14–17
 investment banking, 17–18
 market making, 18
 merger and acquisition, 20
 trading, 18–19
 venture capital, 20–21
Risk propensity
 definition, 148–149
 of SDT, 147–148
 RLZ model, 120–121

SAPE and high-frequency trading, 221–223
high-frequency trading and technology, 222–223
portfolio management with SAPE algos, 222
SAPE for portfolio management about, 201–203
advanced trading strategies with SAPE, 217–221

intraday evidence of effectiveness of, 203–205
SAPE and high-frequency trading, 221–223
SAPE investment strategy study, 214–217
trading process with SAPE study, 214–217
trading strategies using SAPE funds, 206
summary, 223
SAPE investment strategy study about, 206–207
arbitrage and hedging strategy evaluation, 212–213
extended hedging strategy, 207–212
fund identification, 207
plans, 207
summary, 213–214
Select statement, 275
Sentences into words, 269
Sentiment asset pricing engine (SAPE). See also advanced trading strategies with SAPE; SAPE for portfolio management; SAPE investment strategy study; trading process with SAPE study
alternative investment tools of macro investor sentiment, 194–199
contribution of, 187–190
described, 185–187
effectiveness of algs for, 190–191
ingines built on, 193–194
implementations of, 191–193
primary users of, 191
summary on, 194
Sentiment asset pricing engine (SAPE) for portfolio management, 181–183
Sharpe ratio, 146, 202, 204, 282–284
Sigma (standard deviation volatility), 147, 238
Signal detection theory (SDT), 143–144, 296–298
non-parametric SDT, 145–146
research using, 179
INDEX

SQL (structured query language)
 dropping table, 275
 records, updating, 276
 select statement, 275
 table creation, 274–275
 tables, data insertion, 275
 tables, record deletion, 275
Status quo bias, 42–46, 49, 75–76, 153, 155, 159. See also endowment effect; inertia equity
Stevens’ law, 153, 172–174, 178, 179
Strings
 assembly, 269–270
 blank removal, 270
 controlling cases, 270
 data object creation, 273
 validity check, 270–271
Structural equations model, 106–111
 discussion, 110–111
 empirical hypothesis, 107–109
 methods of, 108–109
 results, 109–110
Substrings
 extracting, 258, 268–269
 locating, 258
Swaps, 228. See also credit default swaps
Tables
 creation of, 274–275
 data insertion, 275
 record deletion, 275
Tangency portfolio, 203
Technology infrastructure for algo creation, 245–277
C++ programming, 273
computer algo development, 248–256
dedicated web server setup, 246–248
flex programming, 274
Java programming, algo jump-starting with, 266–273
SQL (structured query language), 274–276
UNIX/LINUX commands for algo development, 276
web hosting vs. dedicated web servers, 245–246
summary, 277
Threshold, 178
Trading frequency, 215
Trading process with SAPE study about, 214–215
 basic strategy, 215
 breakeven analysis, 216–217
 cost analysis, 216
 fund selection, 215–216
 fund strategy, 215
 trading frequency, 215
Tranches, 230
UNIX/LINUX commands for algo development, 276
Value at risk analysis, 147–148
Variables, 259
Visual Funds, 151–152
Volatility
 calculation with ARCH formula, 292–293
 sigma (in standard deviation), 147, 238
Web hosting vs. dedicated web servers, 245–246
Web Investor Confidence Index (WICI), 197–199
Weber-Fechner’s laws, 170, 173–174
Weber’s law, 43, 154–155, 169–173
Z scores from probability, 281–282