Index

Note: Page numbers in *italic* refer to figures or tables.

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorbance</td>
<td>336</td>
</tr>
<tr>
<td>acronyms</td>
<td>4</td>
</tr>
<tr>
<td>AES see Auger Electron Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>AFM see Atomic Force Microscopy</td>
<td></td>
</tr>
<tr>
<td>Airy discs</td>
<td>538</td>
</tr>
<tr>
<td>ALD, 338–9</td>
<td></td>
</tr>
<tr>
<td>alkali metal ion source, 129</td>
<td></td>
</tr>
<tr>
<td>alkanethiolates, 145, 147</td>
<td></td>
</tr>
<tr>
<td>alkanethiols, 504–8, 547–8, 550, 551</td>
<td></td>
</tr>
<tr>
<td>alloys, 232, 312–14</td>
<td></td>
</tr>
<tr>
<td>Amontons' law, 529</td>
<td></td>
</tr>
<tr>
<td>analysis, techniques overview, 2–3, 4, 5–7</td>
<td></td>
</tr>
<tr>
<td>analysers see mass/energy analysers</td>
<td></td>
</tr>
<tr>
<td>angular dependence, photoelectron, 89, 91, 92</td>
<td></td>
</tr>
<tr>
<td>antimony, 378</td>
<td></td>
</tr>
<tr>
<td>arachidic acid, 176</td>
<td></td>
</tr>
<tr>
<td>artificial neural networks, 603–6</td>
<td></td>
</tr>
<tr>
<td>atomic concentration, 31–2, 33</td>
<td></td>
</tr>
<tr>
<td>Atomic Force Microscopy (AFM), 4, 5</td>
<td></td>
</tr>
<tr>
<td>basic principles</td>
<td></td>
</tr>
<tr>
<td>contact mechanics, 515–16</td>
<td></td>
</tr>
<tr>
<td>forces at surfaces, 511–14</td>
<td></td>
</tr>
<tr>
<td>force–distance measurement, 514–15</td>
<td></td>
</tr>
<tr>
<td>modes of operation, 519–20</td>
<td></td>
</tr>
<tr>
<td>contact/tapping, 520–1</td>
<td></td>
</tr>
<tr>
<td>non-contact, 521–3</td>
<td></td>
</tr>
<tr>
<td>quantification/cantilevers, 516–19</td>
<td></td>
</tr>
<tr>
<td>biological applications, 179–80, 181, 532–7</td>
<td></td>
</tr>
<tr>
<td>see also under lithographic techniques,</td>
<td></td>
</tr>
<tr>
<td>Atomic Layer Deposition (ALD), 338–9</td>
<td></td>
</tr>
<tr>
<td>atomic manipulation, 544–5</td>
<td></td>
</tr>
<tr>
<td>atropine, 1992</td>
<td></td>
</tr>
<tr>
<td>attenuated total internal reflection, 344–5</td>
<td></td>
</tr>
<tr>
<td>attenuation length, 18–19, 66</td>
<td></td>
</tr>
<tr>
<td>Auger Electron Spectroscopy (AES)</td>
<td></td>
</tr>
<tr>
<td>applications, 44</td>
<td></td>
</tr>
<tr>
<td>basic principles</td>
<td>4, 9–11, 43–4</td>
</tr>
<tr>
<td>Auger and photoemission compared, 16–17, 52</td>
<td></td>
</tr>
<tr>
<td>chemical shifts, 19–21, 42–3</td>
<td></td>
</tr>
<tr>
<td>electron backscattering, 10, 17–18</td>
<td></td>
</tr>
<tr>
<td>escape depth/attenuation length, 18–19</td>
<td></td>
</tr>
<tr>
<td>ionization cross-section, 15–17</td>
<td></td>
</tr>
<tr>
<td>kinetic energies and transitions, 11–15</td>
<td></td>
</tr>
<tr>
<td>depth profile analysis, 33–4</td>
<td></td>
</tr>
<tr>
<td>chemical shifts in profiles, 42–3</td>
<td></td>
</tr>
<tr>
<td>depth resolution, 36–7</td>
<td></td>
</tr>
</tbody>
</table>

Surface Analysis – The Principal Techniques 2nd Edition Edited by John Vickerman and Ian Gilmore
© 2009 John Wiley & Sons, Ltd
Auger Electron Spectroscopy (AES)
(continued)
λ-correction, 41–2
preferential sputtering, 40–1
sputter rates, 37–40
thin film calibration standard,
34–6
instrumentation, 21–2
calibration, 30–1
detection limits, 29–30
electron beams/sources, 22–3
modes of acquisition/operation, 24–9
spectrometers, 21–3, 24
quantitative analysis, 31–3
Auger lines in ESCA spectra, 75–6
backscattering, electron, 10, 17–18, 411
see also Rutherford Backscattering,
backup pumps, 636
bacteria, 162–6, 193, 601–2
ball cratering, 26–7, 28
basis, crystal, 393
Beer’s Law, 65
beryllium metal surface, 413–14
b bevelling, 246–9
binding energies, 12, 13, 51–2
and chemical shift, 52–3
organic samples, 56
referencing in ESCA, 58–9
and Scofield cross-section, 69
biological systems and studies
AFM, 532–7
SNOM, 540
static SIMS, 162–8, 177–83, 213
DESI applications, 196–8
post-ionization techniques, 190–3
STM, 508–11
bismuth deposition, 423–4
bisphenol-A, 161–2
Bohr’s critical angle, 271, 272
boron, 225, 229
Bragg’s Law, 394
Bragg’s rule, 286
buncher–ToF, 139, 172
C$_{60}$ sputtering, 94, 99, 118, 119, 152, 153
biological systems, 162–6, 169, 171, 172, 176–83, 214
semiconductor depth profiling, 217
calcite, 459–62
calibration standards
AES, 30–1
ESCA, 58–9, 70–1
cantilevers (AFM), 511–12, 516–19
capping layers, 231
carbon monoxide adsorption
atomic manipulation, 545
on copper, 350–2, 355
on nickel, 308–10, 445–7, 470–2
on platinum, 356, 453–6
carbon nanotubes, 500–1, 517
catalysts, 290–3, 310–12
avtomotive exhaust, 156–8
hydrosulfurization, 382–3
centring, mean, 576
caesium gun, 157
CFM, 524–6
channelling, 293–7
character tables, 369, 370, 371, 372, 374
charge compensation, 60–1, 88, 124–5
cheek cells, 173, 179–80
chemical derivatization, 96–9
Chemical Force Microscopy (CFM), 524–6
chemical shift
in AES, 19–21, 42–3
and binding energy in ESCA, 52–63
cholesterol, 102, 172, 182
classification, multivariate, 599–606
cluster ions, 115–16, 118–19, 214
and depth profiling, 124
field ionization sources, 131
imaging/analysis, 138–9
automotive catalyst, 156–7
biological samples, 162–6, 169–72, 176–83
molecular dynamics studies, 148–9
collision kinematics, 172–5
Compton scattering, 50–1
core level energy, 16
cryopumps, 633–4
crystal structure, 393
surface, 293–7, 316–23, 489–90
crystal truncation rods, 451
cyclohexane adsorption, 352–3
cylindrical mirror analyzer, 21, 24, 306
cytosine, 153–4
damage cross-section, 117, 118
DART, 198
data analysis see multivariate data analysis
deconvolution, 238–9
delta layers, 236–9
depth analysis/profiling
AES, 25–8, 33–43
dynamic SIMS, 212–13, 217–24
near surface regions, 230–3
quantification, 233–42
sources of errors, 242–6
ESCA, 89–94
multivariate curve resolution, 581–2, 583
RBS, 298
quantitative layer, 290–3
surface structure, 293–7
static SIMS, 172–5
Desorption Electrospray Ionization Mass Spectrometry (DESI), 194–9
desorption ionization model, 150–2
deuterium adsorption, 294–7
dialkyl disulfides, 504–5
dielectrics, 499–500
diffraction, theory of
three-dimensional crystals, 392–8
two-dimensional surfaces, 398–402
diffuse reflectance, 345–8
diffusion pump, 628–30
dimensionality of data, 567–8
dimyristoyl phosphatidic acid, 176
dip-pen nanolithography, 457–8
dipalmitoylphosphatidylincholine, 192
dipole interactions, 362–7
dipole scattering, 365–7
direct analysis in real time, 195, 198
Direct Recoil Spectroscopy (DRS), 320–3
disappearance cross-section, 117–18
discriminant function analysis, 600–2
DNA, 508–10, 537, 550
dopants and impurities, 226–30
uniformly doped reference materials, 235–6
DPPC, 192
DRS, 320–3
dual beam methods, 254–6
duoplasmatron, 128
dynamic range
dynamic SIMS, 209–11, 222–4
static SIMS, 173
dynamic SIMS, 207–68
background/overview, 207–14
applications, 207–8, 213, 233
dynamic vs static SIMS, 114, 209
modes of operation, 211–13
sensitivity and dynamic range, 209–11
complementary/multi-technique approaches, 224–5
depth profiling, 217
calibration of depth scale, 241–2
depth resolution, 217–22
dynamic range and memory effects, 222–4
sources of error, 242–6
dynamic SIMS (continued)
dopant and impurity profiling, 226–7
high concentration and matrix effect, 227–30
instrumentation, 209, 252–3
scanning microprobe, 126
secondary ion optics, 253
near surface profiling, 230–3
novel techniques, 246
bevelling and imaging/line scanning, 246–51
two-dimensional analysis, 251
primary ion beams/sputtering, 208–9, 214–17
quantification of data, 233–4
delta layers/response functions/deconvolution, 236–9
ion implant reference/fabrication, 234–5, 239–40
thin film reference, 240–1
uniformly doped reference, 235–6
specimen selection/preparation, 244–5

EELS see Electron Energy Loss Spectroscopy
Einstein equation, 58
Elastic Recoil Detection (ERD or ERDA), 320
elastic scattering, 365–7
ELDI, 198–9
Electrochemically Modulated IR, 358
electron backscattering, 10, 17–18, 411
electron beams/sources, 22, 127–8
Electron Diffraction see Low Energy Electron Diffraction; Reflection High Energy Diffraction
Electron Energy Loss Spectroscopy (EELS), 12–13, 361–2
elastic/dipole scattering, 365–7
inelastic/impact scattering, 362–5
instrumentation, 367–8
spectra, expected forms of, 374–5
Electron Induced X-Ray Analysis (EIX), 299, 300
electron post-ionization, 184
electron scattering
backscattering, 10, 17–18, 411
elastic/dipole, 365–7
inelastic/impact, 362–5
Electron Spectroscopy for Chemical Analysis (ESCA)
background/overview, 4, 5–7
applications, 50, 100–1
historical development, 48–9
photoemission, 48, 50–2
binding energy and chemical shift, 52–3
binding energy referencing, 58–9
charge compensation in insulators, 60–1
final state effects, 57–8
initial state effects, 53–6
Koopman’s theorem, 53
peak fitting, 62–3
peak widths, 61–2
chemical derivatization, 96, 98
depth profiling, 89
angular measurements, 89–92
ion etching/sputtering, 93–4
variable X-ray energies, 92–3
image analysis, 587–9
instrumentation, 80, 81
accessories, 88
analysers, 84–6
data systems, 86–7
vacuum systems, 80–2
X-ray sources, 82–4
quantitative analysis, 67–8
polyurethane exemplar, 71–3, 74, 76–7
standard samples, 70–1
resolution/signal-to-noise, 88–9, 94–5
INDEX

spectral features/interpretation, 73–80
features summarized, 80
high-resolution scan, 76–9
wide/survey scan, 73, 75–6
valence bond analysis, 96–9
X-Y mapping and imaging, 94–5
electronic gating, 174, 256
electronic states, 10–11
electrospray ionization, 195, 195–6
embedded-atom potential method, 144–5
EMIRS, 358
energy analysers see mass/energy analysers
energy straggling, 286–7
enhanced laser desorption mass spectrometry, 198–9
epoxide adhesive study, 158–62
ERD, 320
escape depth, mean, 18–19, 25, 66
ethene adsorption, 338, 366–7
ethyldyne species, 338
ethyne adsorption, 369–74
evacuation chamber, 635
evanescent field, 538
Ewald sphere construction, 394–5, 404–6
for LEED technique, 204–6
for RHEED, 419–20
in two-dimensions, 401–2
EXAFS see X-ray Absorption Fine Structure
factor analysis, 569–71
fast atom bombardment, 124, 128, 151
fibronectin, 534–5
field emission gun, 22–3
field ionizing sources, 130–1
final state effects (ESCA), 57–8
flanges and seals, 637
flooding electrons, 60–1, 88, 124
Fourier Transform IR Spectrometry (FTIR), 334–5
microscopy/mapping, 359–61
subtractively normalized interfacial (SNIFTIRS), 358–9
surface Raman techniques, 380–1
Friction Force Microscopy (FFM), 526–30
application to SAMs, 530–2
frogs eggs, 177–9
FTIR see Fourier Transform
fuel cells, 208
functional groups, 96–9
gas ballast, 624–6
gases and vapours
distinguishing between, 617–18
models of, 613–19
viscous and molecular flow, 620
gating, 174, 254–6
germanium alloy, 215–16
glass, 232
gold surface studies, 490–4
graphite
highly oriented pyrolytic, 494–5, 521
surface structure, 487–8, 502, 509
ground state, 53–4
group theory analysis, 368–9
Dipolar EELS and RAIRS spectra, 374–5
flat, featureless surface, 369–72
surface of FCC metal, 373–4
hair fibres, 585–7
Hallwachs, W., 49
haloperidol, 115, 152–3, 154
hemispherical analyzer, 21–2, 24, 87, 306
Hertz, H., 49
Hertz model, 515
hierachcal cluster analysis, 602–3
hollow cathode, 128
hot cathode ionization gauges, 642–5
HREELS see Electron Energy Loss Spectroscopy
hydrosulfurization, 382–3

images, multivariate, 582, 584–9, 584–91
Impact Collision Ion-Scattering Spectroscopy (ICISS), 316–20
impact scattering, 362–5
indium, 186
inelastic background intensity, 91–2
inelastic electron scattering, 362–5
Inelastic Electron Tunnelling Spectroscopy, 500–1
inelastic mean free path, 6, 63–7
Inelastic Neutron Scattering (INS), 381–2
information depth, 6, 66
Infrared Spectroscopy, 6, 334–61
Fourier Transform spectrometer, 334–5
photoacoustic spectroscopy, 340–2
reflectance methods, 342–4
reflection–absorption (RAIRS), 337–8, 348–53
FTIR microscopy, 359–61
polarization modulation, 353–8
SNIFTIRS, 358–9
transmission spectroscopy, 335–40
INS, 381–2
insulators, 60–1, 88, 124–5
intensity response function, 30
interaction potentials, 275–8
interference techniques
 background and theory, 391–402
electron diffraction, 402–24
X-ray techniques, 424–74
ion beams/sources, 125–7, 214
electron bombardment, 127–8, 304–5
field ionization, 130–1
Low-Energy Ion Scattering, 304–5
 plasma, 128–9
 and Rutherford Backscattering, 288–90
 surface ionization, 129
 ion implants, 234–5, 239–40
 ion microscopy, 126–7, 133, 212–13, 255
 ion mirror, 135
Ion Scattering Spectroscopy see Low-Energy Ion Scattering
ion-beam etching/sputtering see sputtering
ionization see ion-beam source;
 post-ionization; secondary ion formation
ionization gauges, 642–5
IR see infrared
isosurface technique, 178–9
ISS see Low-Energy Ion Scattering
Johnson–Kendel–Roberts model, 515–16, 528–9
k-space, 394
Kelvin Probe Microscopy, 543
kinematic factor, 272–5
Knudsen flow, 620
Koopman’s theorem, 53
λ-correction, 41–2
lanthanum boride, 22–3
Laser Raman Spectroscopy see Raman Spectroscopy
 lasers
 and photon induced ionization, 185–90, 194
table top, 100
Lateral Force Microscopy see Friction Force Microscopy
 lattice rods, 401
Laue equations, 449
LEED see Low Energy Electron Diffraction
LEIS see Low-Energy Ion Scattering
Lennard–Jones potential, 512–13
INDEX

line scan
Auger Electron Spectroscopy, 24, 26–7, 28
dynamic SIMS, 246–9
linear cascade theory, 143–4
lipid multilayers, 461, 463
liquid crystals, 501–4
liquid metal ion source, 130–2, 166, 169–70, 171
lithographic techniques, 544
Atomic Force, 545–7
Millipede technique, 550–1
Near-Field Photolithography, 549–50, 551
Scanning Tunnelling, 544–5
dip-pen techniques, 547–8
nanoshaving/nanografting, 548–9
liver tissue, 197
long range order, 391–2
Low Energy Electron Diffraction (LEED)
basic principles, 402–4
computation/data analysis, 409–11
Ewald sphere construction, 404–6
LEED patterns, 406–9
illustrative applications,
antimony overlayer, 414–16
beryllium metal surface, 413–14
non-ordered adsorbant, 416–17
instrumentation, 411–12
spot profile analysis, 412–13
Low Energy Ion Scattering (LEIS)
background/RBS compared, 269–71
basic principles,
collision kinematics, 272–5
interaction potentials and cross-sections, 275–8
neutralization, 300–3
scattering process, 271–2
shadow cone, 278–81, 316, 321
computer simulations/programs, 281–4, 314–15
instrumentation, 303–7
surface composition analysis, 307–8
adsorbates, 308–10
alloys, 312–14
catalysts, 310–12
multiple scattering, 314–15
reliability of data, 315–16
surface structure analysis, 316–19
direct recoil spectroscopy, 320–3
surface reconstruction, 319–20
Madelung potential, 56
magnetic sector analysers, 132–3, 252–3
MALDI, 138, 151–2, 153
manometers, 639–40
mapping
AES detection limits, 25, 28, 29, 30
FTIR microscopy, 359–61
MARLOWE program, 282–4
mass interference, 226
mass transport effects, 211, 246
mass/energy analysers, 85–6, 131–2, 305–6
magnetic sector, 132–3
quadruple, 133–5
time-of-flight spectrometers, 135–9, 306
matrices and vectors, 565–7
matrix assisted laser desorption/ionization, 138
matrix effect, 121–2, 183–4
dopants and dynamic SIMS, 227–30
lack of in LEIS, 316
and organic analysis, 151–5
maximum autocorrelation factors, 589–91
mean centering, 576
mean free path, 615
Medium-Energy Ion Scattering (MEIS), 270, 297–8, 299
memory effects, 222–4
mercaptohexadecanioc acid, 547–8
micro-volume analysis, 211
microelectronics see semiconductors
Miller Indices, 393, 394, 397, 401
Millipede technique, 550–1
molecular biology, 182–3
molecular dynamics simulations, 144–9
molecular ion detection, 226–7
Molecular Surface Mass Spectrometry (static SIMS)
background/overview, 4, 6, 113–16
dynamic vs static SIMS, 114, 209
basic principles,
matrix effect, 121–2, 151–5, 183–4
secondary ionization, 121–3, 140–3, 149–51
SIMS equation, 116
sputtering, 116–21, 143–9
static limit, 123–4
surface charging, 124–5
desorption mass spectrometry, 194–9
instrumentation, 125
mass analysers, 131–40
primary beam sources, 125–31
post-ionization (sputtered neutrals), 183–90
and SIMS, 190–4
spectral analysis, 155
automotive catalyst, 156–8
epoxide adhesive study, 158–62
imaging beyond the static limit, 168–72
urinary tract bacteria, 162–6
3D imaging/depth profiling, 123–4, 172–5
cells and tissue, 177–83, 184
multilayers, 176–7
Molière approximation, 278
molybdenum disulfide, 503–4
monolayer time, 621
multilayer samples, 176, 227, 229
multiplet splitting, 77, 79, 80
multivariate data analysis, 8, 563–5
basic concepts, 565
choice of method, 568–9, 607
dimensionality and rank, 567–8
matrices and vectors, 565–7
classification methods, 599–600
artificial neural networks, 603–6
discriminant function analysis, 600–2
hierarchal cluster analysis, 602–3
factor analysis, 569–71
multivariate curve resolution, 579–82
multivariate images, 582, 584–91
principal component analysis, 571–9
regression methods, 591–4
calibration, validation and prediction, 596–8
partial least squares, 595–6
principal component regression, 594
summary of techniques, 607
nanolithography see lithographic techniques
nanotubes, 500–1, 517
nascent molecule model, 150
Near Edge X-ray Absorption Fine Structure see under X-ray Absorption Fine Structure
near surface profiling, 230–3, 298
neutral atom beams, 124, 128, 151
neutral particles see post-ionization
Neutron Scattering see Inelastic Neutron Scattering
NEXAFS see under X-ray Absorption Fine Structure
non-resonant multi-photon ionization, 187–90
normalization, 576
NSOM see Scanning Near-Field Microscopy
optical fibre probes, 539–40
optical gating, 174, 254–6
organic chemicals, 6, 56, 151–5
binding energies, 56
derivatization and valence band analysis, 96–9
oxidation states, 54
oxygen adsorption, 416, 418
oxygen recoil intensity, 321–2
partial least squares, 595–6
PCA see Principal Component Analysis
penetration depth, 7
peptides, 193
phonons, 377–8
Photoacoustic IR Spectroscopy, 340–2
photoelectric effect, 50–2
history of, 48–9
Photoelectron Diffraction (XPD), 392, 464–5
applications exemplified, 470–4
instrumentation/experimental details, 469–70
theoretical considerations, 465–8
photon emission, 16–17, 50–2, 69
photon induced ionization, 185–90
physical constants and units, 649–52
Pirani gauge, 641–2
PIXE, 284, 298–9, 300
Planck, M., 49
plasma ion beam, 128–9
plasmon loss, 79, 80
point analysis (AES), 24–5, 29, 30
Poisson scaling, 577
polarized radiation, 343, 348–9
polyatomic cluster ions see cluster ions
poly(ethylene glycol) standard, 70–1, 72
poly(ethylene terephthalate), 171
polymers
multivariate data analysis, 584–5, 598–9
sputtering and ion formation, 141–3, 147–8
valence band studies, 98–9
polymethylmethacrylate, 188–9
polytetrafluoroethylene standard, 70–1
polyurethane sample, 71–3, 74, 76–7
post-ionization (sputtered neutrals), 183–4
dynamic SIMS applications, 230
photon induced, 185–90
static SIMS applications, 190–4
pressure see under vacuum technology
primary beams see ion beams/sources
principal component analysis, 571–2
data preprocessing, 575–7
formation, 572–4
number of factors, 574–5
regression, 594
probe gating, 256
Probe Microscopy Lithography see lithographic techniques
profiling, 25
prostatic hyperplasia cells, 182–3
proteins, 510–11, 533–5
principal component analysis, 577–9
Proton Induced X-ray Analysis (PIXE), 284, 298–9, 300
PTFE standard, 70–1
pumping systems see under vacuum technology
quadrupole mass analysers, 133–5, 252–3
quantum numbers, 10–11
quantum tunnelling, 481–3
radical cations, 191
RAIRS see Reflection–Absorption IR
Raman Spectroscopy, 375–6
 basic principles, 376–7
 metal surface analysis (SERS), 379–81
 surface vibrations/phonons, 377–8
rank of matrix, 567–8
rat brain section, 180–2
Rayleigh’s equation, 538
RBS see Rutherford Backscattering
Reflectance IR Spectroscopy, 342–3
 attenuated total internal reflection, 344–5
 diffuse reflectance, 345–6
 see also Reflection–Absorption IR,
Reflection High Energy Electron Diffraction (RHEED), 398, 403
 applications, 422–4
 basic principles, 418–19
 Ewald sphere construction, 419–20
 RHEED patterns and analysis, 420–1
 instrumentation, 421–2
Reflection–Absorption IR Spectroscopy (RAIRS), 337–8, 348–53
 infrared microscopy, 359–61
 polarized modulation, 353–9
 spectra, expected form of, 374–5
 regression, multivariate, 591–9
 resonance neutralization, 300–3
Resonant Ionization Mass Spectrometry (RIMS), 212, 227, 230
 resonant multi-photon ionization, 186–7
 response functions, 237–8
RHEED see Reflection High Energy Electron Diffraction
RIMS, 212, 227, 230
rotary pumps, 623–6
ruthenium sulfide, 382
Rutherford Backscattering (RBS), 212, 225
 background/LEIS compared, 269–71
 basic principles,
 collision kinematics, 272–5
 energy loss and stopping power, 284–7
 interaction potentials and cross-sections, 275–8
 ion beam and sputtering, 289–90
 scattering process, 271–2
 shadow cone, 278–81
 complementary/related techniques, 298–300
 computer simulation/programs, 281–4, 298
 instrumentation, 287–9
 Medium-Energy Ion Scattering, 270, 297–8
 quantitative layer analysis, 290–3, 298
 surface structure analysis, 293–7, 298
SALI, 190
SAM, 22
sampling depth, 6, 63–7, 89
SAMs see self-assembled monolayers
satellite peaks (ESCA), 62, 74, 76, 80
Scanning Auger Microprobe, 22
Scanning Electrochemical Microscopy, 543
Scanning Electron Microscopy (SEM), 28, 29
Scanning Near-Field Optical Microscopy (SNOM)
 apertureless techniques, 541–2
 optical fibre techniques, 537–41
 see also under lithographic techniques,
 Scanning Probe Microscopy (SPM) techniques, 479–81
 Atomic Force Microscop, 511–24
Chemical Force Microscopy, 524–6
Friction Force Microscopy, 526–32
lithographic applications, 544–51
Scanning Near-Field Optical Microscopy, 537–44
Scanning Tunnelling Microscopy, 481–511
see also each individual technique, Scanning Thermal Microscopy, 543
Scanning Tunnelling Microscopy (STM), 4, 5, 479–81
basic principles, quantum tunnelling, 481–3
tip geometry, 484–7
biological samples, 508–11
instrumentation and operation, 487–9
SMT–IETS techniques, 500–1
surface studies overview, 489–90
carbon nanotubes, 500–1
dielectrics/metal oxides, 499–500
gold surfaces, 490–4
graphite surfaces, 494–5
liquid crystals, 501–4
self-assemble monolayers, 504–8
silicon (111), 495–9
see also under lithographic techniques,
scattering angle, 274, 275, 278
scattering integral, 275
secondary ion formation, 121–3, 140–3, 149–50
desorption ionization model, 150–2
ionization probabilities (dynamic SIMS), 210
nascent molecule model, 150
Secondary Ion Mass Spectrometry, dynamic see dynamic SIMS,
static see Molecular Surface Mass Spectrometry
self-assembled monolayers, 357, 463, 504–8
FFM studies, 529–32
SEM see Scanning Electron Microscopy
semiconductors, 208, 211, 215–17, 338, 447, 459
depth profiling, 217–24, 233
dielectrics, 499–500
dopants and impurities, 226–30
growth/surface studies, 422–4
two-dimensional analysis, 251
SERS, 379–81, 541
SEXAFS see X-ray Absorption Fine Structure
shadow cones, 278–81, 297
shake-up satellite peaks, 74, 76
short range order, 391–2
SI units, 640–52
silicon substrate, 215–16, 338–9
silicon(111) surface, 495–9
atomic manipulation, 544–5
SIMNRA program, 282, 283
SIMS
dynamic see dynamic SIMS,
static see Molecular Surface Mass Spectrometry,
SNMS, 183–94, 212, 227, 230
SNOM see Scanning Near-Field Optical Microscopy
sorption pumps, 631–3
spin-orbit doublets, 77, 78, 79, 80
SPM see Scanning Probe Microscopy
sputter-ion pumps, 632–3
Sputtered Neutral Mass Spectrometry (SNMS), 183–94, 212, 227, 230
sputtered neutrals see post-ionization
sputtering
Auger Electron Spectroscopy, 26
depth profile analysis, 33–6
sputtering (continued)
differential sputtering, 40–1
sputter rates 37–40
dynamic SIMS, 208–9, 214
transient behaviour, 242–4
Rutherford Backscattering, 289–90
static SIMS, 116–21
damage cross-section, 117, 118
disappearance cross-section, 117–18
models for, 143–9
sputter rate, 117–18, 175
static yield, 116–17
static limit, 119, 123–4
stainless steel, 232
static limit, 119, 123–4
static SIMS see Molecular Surface Mass Spectrometry
steel, 188
stigmatic imaging, 212
STM see Scanning Tunnelling Microscopy (STM)
Stokes photons, 376
stopping power, 284
straggling, 286–7
structure analysis, 293–7, 316–23
structure factor, 396–7
sublimation pumps, 631
sum-frequency generation methods, 383–6
surface
defined/characterized, 1–4
radiation damage, 7
Surface Analysis by Laser Ionization (SALI), 190
surface charging, 60–1, 88, 124–5
surface composition analysis, 307–16
Surface Enhanced Raman Spectroscopy (SERS), 379–81, 541
surface ionization ion beam, 129
surface nets, 398–9, 400
surface relaxation, 401
surface selection rule, 365, 368, 374
surface topography
and dynamic SIMS, 211, 222, 246
and static SIMS, 175, 179–80
Surface under Ultra-high Vacuum (SUV) station, 451–2
Surface X-ray Diffraction (SXRD), 392
applications, 448, 453–6
background and theory, 447–51
experimental details, 451–3
symmetry, 364–5
and group theory, 368–9
and surface structure, 391
synchrotron radiation, 95, 425–7
tantalum oxide films, 34–7
TEM, 215, 225
Tensor-Leed computation, 410–11
thermionic electron sources, 22–3
thin film calibration standard, 34–6
thiols, 504–8, 547–8, 550, 551
Thompson, J. J., 49
thymine, 153–4
time-of-flight mass spectrometry see ToF-SIMS
tip geometry, 484–7
tissue samples, 180–2
titanium oxide layer, 290–3
ToF–SIMS, 135–40, 252–3, 306
dual beam methods, 254–6
ion beam sources, 125, 129, 131
multivariate data analysis, 581–2, 584–91, 598–9
and photon ionization, 184, 185
spectral analysis/imaging, 172
ambient desorption, 195
automotive catalyst, 156–8
biological samples, 162–6, 177–9, 181–3
epoxide adhesives, 158–62
topography see surface topography
total internal reflection, 344–5
transitions, Auger, 11–15
chemical shifts, 19–21
Index

Transmission Electron Microscopy (TEM), 215, 225
Transmission IR Spectroscopy, 335–40
trihydroxyacetophenone, 153–4
truncation rods, 451
tungsten filament, 22–3
tunnelling currents, 483–4, 488, 511
turbomolecular pump, 626–8

unit cell, 393
units and physical constants, 649–52
urinary tract infection, 162
urine sample, 196–7

vacuum technology, 5
gas/vapour models, 613–19, 621
measuring low pressure, 638
direct pressure gauges, 639–40
indirect pressure measurement, 640–5
partial pressure measurement, 645–7
units, 616
pressure regions/vacuum types, 619–21
pumping systems, choice of system, 635–6
evacuation of chamber, 635
flanges and seals, 637
pump types, 622–34
size of backup pumps, 636
valence band analysis, 96–9
van de Graaf accelerator, 288
vapours see gases and vapours
variance scaling, 576–7
vectors and matrices, 565–7

Vibrational Spectroscopy techniques, 333–4
Electron Energy Loss Spectroscopy, 361–8
group theory of surface vibrations, 368–75
Inelastic Neutron Scattering, 381–3

Infrared Spectroscopy, 334–61
Laser Raman Spectroscopy, 375–81
sum-frequency generation methods, 383–6
see also individual techniques, virus exocytosis, 536
volume flow rate, 618, 618–19
von Willebrand factor, 534

wavevector, 394
Wood’s notation, 401

X-ray Absorption Fine Structure (EXAFS), 392, 429
absorption/electron excitation, 427–31
applications, 432, 438–9
instrumentation/detection, 437–9
modulation and spectra, 431–7
Near Edge EXAFS (XANES), 443–7
Surface EXAFS (SEXAFS), 439–41
and X-ray Standing waves, 441–3
X-ray diffraction, 225, 392
general techniques, 424–7
theory of see diffraction,
see also Surface X-ray Diffraction;
X-ray Absorption Fine Structure; X-ray Standing Wave,
X-ray Photoelectron Spectroscopy (XPS) see Electron Spectroscopy for Chemical Analysis
X-ray Standing Waves (XSW), 92, 441–3, 456–8
applications, 459–64
experimental details, 459
theoretical considerations, 458–9
X-Y mapping (ESCA), 94–5
XAFS see X-ray Absorption Fine Structure
XANES see under X-ray Absorption Fine Structure
xenon atoms, 544
Xenopus laevis, 177–9
XPD see Photoelectron Diffraction
XPS see Electron Spectroscopy for Chemical Analysis
XSW see X-ray Standing Wave
yeast cells, 166–7