Contents

Preface IX

1 General Properties of ZnO 1
1.1 Crystal Structure 1
1.2 Lattice Parameters 12
1.3 Electronic Band Structure 14
1.4 Mechanical Properties 26
1.5 Vibrational Properties 37
1.6 Thermal Properties 49
1.6.1 Thermal Expansion Coefficients 50
1.6.2 Thermal Conductivity 52
1.6.3 Specific Heat 57
1.6.4 Pyroelectricity 59
1.7 Electrical Properties of Undoped ZnO 63
1.7.1 Low-Field Transport 63
1.7.2 High-Field Transport 69
References 70

2 ZnO Growth 77
2.1 Bulk Growth 78
2.2 Substrates 84
2.2.1 Sapphire Substrates for ZnO Epitaxy 84
2.2.2 Other Substrates for ZnO Epitaxy (ScAlMgO$_4$, CaF$_2$, LiTaO$_3$, LiNbO$_3$) 92
2.2.3 ZnO Homoepitaxy 93
2.3 Epitaxial Growth Techniques 94
2.3.1 RF Magnetron Sputtering 94
2.3.2 Molecular Beam Epitaxy 98
2.3.2.1 Growth on c-Plane Sapphire 103
2.3.2.2 Growth on a-Plane Sapphire 107
2.3.2.3 Growth on GaN Templates 110
2.3.2.4 Growth on ZnO Substrates 112
3 Optical Properties 131
3.1 Optical Processes in Semiconductors 132
3.1.1 Fundamentals of the Absorption and Emission Processes 135
3.1.2 Optical Absorption and Emission in Semiconductors 142
3.1.3 Band-to-Band Transitions 151
3.1.4 Excitonic Transitions 153
3.2 Optical Transitions in ZnO 154
3.2.1 Free Excitons and Polaritons 155
3.2.2 Bound Excitons 164
3.2.3 Two-Electron Satellites in PL 169
3.2.4 DAP and Shallow Acceptor-Bound Exciton Transitions and LO-Phonon Replicas in PL 171
3.2.5 Temperature-Dependent PL Measurements 174
3.3 Defects in ZnO 177
3.3.1 Predictions from First Principles 178
3.3.2 Defect-Related Optical Transitions in ZnO 182
3.3.2.1 Green Luminescence Band 183
3.3.2.2 Yellow Luminescence Band 187
3.3.2.3 Red Luminescence Band 188
3.4 Refractive Index of ZnO and MgZnO 189
3.5 Stimulated Emission in ZnO 195
3.5.1 Polycrystalline ZnO Films and “Random Lasers” 202
3.5.2 Multiple Quantum Wells 207
3.6 Recombination Dynamics in ZnO 208
3.7 Nonlinear Optical Properties 212
3.7.1 Second-Order Nonlinear Optical Properties 217
3.7.1.1 Second-Harmonic Generation 218
3.7.2 Third-Order Nonlinear Optical Properties 224
3.7.2.1 Third Harmonic Generation 226
3.7.3 Intensity Dependent Refractive Index 229
3.7.4 Two-Photon Absorption 232
References 236

4 Doping of ZnO 245
4.1 n-Type Doping 246
4.2 p-Type Doping 250
4.2.1 Nitrogen Doping 252
4.2.2 Codoping Method 259
4.2.3 Other Dopants in Group V 264
4.2.4 Concluding Remarks on Reliability of p-Type ZnO 266
References 268
5 ZnO-Based Dilute Magnetic Semiconductors 277
 5.1 Doping with Transition Metals 279
 5.2 General Remarks About Dilute Magnetic Semiconductors 284
 5.3 Classification of Magnetic Materials 284
 5.4 A Brief Theory of Magnetization 288
 5.5 Dilute Magnetic Semiconductor Theoretical Aspects 295
 5.6 Measurements Techniques for Identification of Ferromagnetism 297
 5.7 Magnetic Interactions in DMS 303
 5.7.1 Carrier–Single Magnetic Ion Interaction 304
 5.7.2 Interaction Between Magnetic Ions 305
 5.7.2.1 Superechange Mechanism 305
 5.7.2.2 Blombergen–Rowland Mechanism 306
 5.7.2.3 Double Exchange Interaction 307
 5.7.2.4 Ruderman–Kittel–Kasuya–Yoshida Mechanism 308
 5.7.2.5 Zener, Mean-Field, and Ab Initio Treatments 309
 5.8 Theoretical Studies on ZnO-Based Magnetic Semiconductors 312
 5.9 Experimental Results on ZnO-Based Dilute Magnetic Semiconductors 318
 5.9.1 Properties of Mn-Doped ZnO 323
 5.9.2 Properties of Co-Doped ZnO 331
 5.9.3 Other TM-Doped ZnO 334
 5.9.4 Magneto-Optical Properties of ZnO-Based DMSs 339

References 343

6 Bandgap Engineering 351
 6.1 Mg$_x$Zn$_{1-x}$O Alloy 352
 6.2 Be$_x$Zn$_{1-x}$O Alloy 359
 6.3 Cd$_y$Zn$_{1-y}$O Alloy 360

References 361

7 ZnO Nanostructures 365
 7.1 Synthesis of ZnO Nanostructures 365
 7.1.1 Vapor-Liquid–Solid (Vapor Transport) Process 365
 7.1.2 Metalorganic Vapor-Phase Epitaxy and Molecular Beam Epitaxy 373
 7.1.3 Other Synthesis Methods 380
 7.2 Applications of ZnO Nanostructures 381

References 384

8 Processing, Devices, and Heterostructures 387
 8.1 A Primer to Semiconductor–Metal Contacts 388
 8.1.1 Thermionic Emission 392
 8.1.2 Thermionic–Field Emission 395
 8.1.3 Field Emission 398
 8.1.4 Leakage Current 400
 8.2 Ohmic Contacts to ZnO 401
8.3 Schottky Contacts to ZnO 405
8.4 Etching of ZnO 408
8.5 Heterostructure Devices 411
8.5.1 Light-Emitting Devices 412
8.5.1.1 Microcavity Devices 421
8.5.1.2 Optically Pumped Lasers 427
8.5.2 Photodiodes 428
8.5.3 Metal–Insulator–Semiconductor Diodes 430
8.5.4 Field Effect Transistors 431
8.5.5 Transparent Conducting Oxides and Thin-Film Transistors 441
8.6 Piezoelectric Devices 446
8.7 Sensors and Solar Cells Based on ZnO Nanostructures 452
8.7.1 Gas Sensors 452
8.7.2 Bio Sensors 453
8.7.3 Solar Cells 454
8.8 Concluding Remarks 455
References 456

Index 469