Index

a
abrasiveness 21
absorption 29
absorption cross section 28
absorption index 28
accelerated test 40
acetylene black 163, 176
active black 181
active pigments 210
Adams–Nickerson (AN) system 25
adhesive tape method 41
aftertreated pigments 11
aftertreatment 67
aftertreatment, oxidative 177
agglomerate 15
alumina flake pigments 246
aluminum pigments 252
American process 90
anatase 52
anticorrosive pigments 207
apparent density 21
aqueous extract 18
brookite 52
building material 47

c
cadmium pigments 121
calcium borate silicates 220
camouflage coating 112
carbon black 163
cascade phosphors 286
catalyst 80
center luminescence 272
cerium sulfide 10
chalking 38, 41
charge in tinting strength 45
channel black 163, 173
charge transfer luminescence 275
chemical composition 11
chemical resistance 40
chloride process 64
chroma difference 26
chromate pigments 128, 212
chrome green 132
chrome orange 132
chrome yellow 128
chromium dioxide 199
chromium oxide 111
CIE 94 33
CIE system 23
CIE tristimulus value 23
CIEDE 2000 33
CIELAB 26
cinnabar 7
classification 8, 12, 13
CMC 33
cobalt blue 120
coercive field strength 200
color difference 26, 33
color measurement 31
color travel 244
color undertone 32
colorimetry 22
combination mica-based pigments 242
copper chromite black 120
copperas red 103
core pigments 12
corrosion 207
critical pigment volume concentration (CPVC) 46
crystallography 14
CVD process 249

density 21
deposit, measurement of 47
depth of shade 35
DIN99 33
direct red 105
disintegration 43
dispersing behavior 45
donor–acceptor pair luminescence 276

economic aspects 8
effect pigments 230
Egyptian blue 7
electroluminescence 278
extender 1

Fabry–Perot effect 249
fast chrome green 132
fastness to chemicals 42
filler 1
filler, conductive 189
fineness of grind 45
floculate 15
flocculation 44
flooding 44
fluorescent lamp 278
French process 91
full shade 33
furnace black 163, 170

galena 7
gas black 163, 173
glass flakes 248
gloss 32, 41
gloss haze 32
goethite 100
gold bronze pigments 252
gray paste method 36

hardness 21
heat stability 39, 42
hematite 100
hiding power 36, 37
hiding power, of achromatic coatings 37
hiding thickness 36
high voltage electroluminescence 278
history 1
Hue difference 26
hybrid pigments, inorganic organic 223

ilmenite 53
inactive black 182
ion-exchange pigments 221
interference pigments 232
iron oxide pigments 99, 195
iron oxide pigments, natural 100
iron oxide–mica 239
iron phosphide 219
iron sulfate 61

Kempf method 41
Kubelka–Munk theory 22, 27, 34

lamp black 163, 175
lanthanum-tantalum oxide-nitride 10
lapis lazuli 136
Laux process 106
lead chromate 128
lead pigments 211
lead sulfochromate 128
leafing 253
lepidocrocite 100, 105
leucoxene 53
light stability 40
lightening power 34, 35
lightness 32
lightness difference 26
lithopone 81, 83
long-afterglow phosphors 276
loss of gloss 38
loss on ignition 18
low voltage electroluminescence 278
luminescence 269
luminescent pigments 269

maghemite 100
magnetic pigments 195
magnetic recording 203
magnetite 100
mass tone 33
matter soluble in water 18
matter volatile 18
metal effect pigments 252
metal oxide–mica pigments 237
metallic effect 255
metallic iron pigments 200
mica 237
micaceous iron oxide 100, 236
micaceous iron oxide pigments 224
Mie’s theory 22, 28
Milori blue 145
mixed metal oxide pigments 116
mixed pigments 11
molybdate orange 130
molybdate pigments 220
molybdate red 130
multiple reflection 234
multiple scattering 22, 27
Munsell system 24

n
Naples yellow 7
natural fish silver 235
natural pearl essence 235
non-leafing 253

o
ocher 100
oil absorption 44
optical excitation 277
optically variable pigments 250
optimum particle size 29
orthophosphates, modified 215

p
paper and board 47
Paris blue 145
particle shape 14
particle size 14, 121
particle size distribution 14, 19
pearl luster pigments 231
Penniman process 105
phosphate pigments 214
photographic method 41
pigment volume concentration (PVC) 46
pigment–binder interaction 44
pigments in binders 43
plastics 47
polyphosphates, modified 217
precipitation process 103
preparation 11
printing ink industry 148
Prussian blue 145

q
quantum dots 288
quantum effect pigments 10

r
red lead 211
reinforcing index 28, 30, 31
reinforcing black 170
relative undertone 34
resistance to light and weather 39
resistance to spittle and sweat 43
rub-out test 44
rubber black 170, 181
rutile 52, 55
rutile yellow 117

s
Sachtolith 81, 85
sacrificial pigments 210
salt spray fog test 42
saturation magnetization 196
scattering 29
scattering cross section 28
scattering power 34, 36
semi-active black 182
siennas 101
sieve analysis 20
significance test 32
silica flake pigments 243
smear point 44
SO2 resistance 42
soot 190
special effect pigments 230
specific surface 21
specific surface area 16
spectra 14
spectral evaluation 35
specular reflection 31
stability towards light, weather, heat, and chemicals 38
stabilization 43
standard climate 17
standard depth of shade 40
standards for pigments 7
strontium chromate 213
strontium chromate pigments 213
substrate pigments 11
sulfate method 59
synthetic raw material 57
synthetic rutile 58
tamped volume 21
thermal black 163, 175
tinting strength 34
tinting strength criteria 35
titanium dioxide 51
titanium dioxide flakes 237
titanium dioxide–mica 239
titanium slag 57
titanium tetrachloride 65
toner pigments 204
toning of black gravure ink 149
toning of black offset printing ink 150
transparency 36, 38
transparent cobalt blue 266
transparent functional pigments 267
transparent iron oxide pigments 261
transparent pigments 261
transparent titanium dioxide 267
transparent zinc oxide 268
Turnbull’s blue 145

u
ultramarine pigments 136
umber 101
undertone 33

v
vacuum metallized pigments 253
viscosity 44
Vossen Blau 148

w
waste management 69
water solubles 18
weak acid 69
weather resistance 41
web-coating process 244
wetting 43

y
yield point 44

z
zinc chromate pigments 213
zinc cyanamide pigments 224
zinc hydroxyphosphite 219
zinc oxide 88
zinc phosphate 214
zinc pigments 226
zinc potassium chromate 213
zinc sulfide 81
zinc tetrahydroxochromate 213
zinc white 88