Index

a
acetonitrile, solvent for chromium oxide 459
acetylene
cyclotrimerization 147–148
reaction with chromium catalyst 427
activation process
counterion 79
elasticity control, LCB 514–517
ion formation and ion separation processes 79–83
methylaluminoxane 79
molecular weight and MW distribution 448–450
activator supports
mesoporous silica SBA-15 60
nanosized sulfated alumina 59
patents 60–63
solid acids 59
studies 58–60
ZrBz₄-sulfated alumina system 59
active centers, in supported Ziegler catalysts
features 221
hydrogen effect on reactivity of 213–216
nonuniformity 205–208
reaction scheme 222–224
activity profiles
gas-phase reactors 358–360
slurry reactors 360–361
acyclic diene metathesis (ADMET) polymerization
acyclic dienes 649
in d-limonene 645
recommendations 634
termination, decomposition and isomerization mechanisms 639
α,ε-dienes 631, 633, 638
AkzoNobel 10
Albemarle 10
alcoholysis 597
alkaline aging 525, 526
alkyne cyclotrimerization, Phillips chromium catalyst
acetylene 147–148
methylacetylene 149–150
alpha-omega dienes 534–536
alumina in Phillips chromium catalysts 413
aluminum alkyls
manufacturers of 10–11
in merchant market 6
aluminum alkyls (cont’d)
 physical and chemical properties 5
 pricing and selection criteria for 11–12
 storage stability 9
 thermal decomposition 9–10
 triethylaluminum (TEAL) 4
 tri-n-butylaluminum 4, 8
aluminum-bridged silica-supported silyl chromate catalyst 576
aluminum-modified chrome–silica catalysts 48–49
aluminum phosphate (AlPO4)
analytical temperature rising elution fractionation (analytical Tref) 207–208
α-olefin/CO copolymerization reactions
 ethylene/CO copolymerizations 599–604
 1-heptene or 1-hexene/CO copolymerizations 609
 ligand modification methods 599–604
norbornene/CO copolymerizations 610–611
propylene/CO copolymerizations 604–609
α-olefin oligomerization 623, 625
α-olefin polymerization catalyst, stereospecificity for 233
(aryl imido)vanadium(IV) dichloride complexes 321
asymmetric copolymerization 608
atactic copolymer 605
atactic polypropylene (aPP) 230
autoclave reactors
 autoclave type pressure vessel 174
 module 172–173
 and safety relief devices 163–164

b
 backbiting process 595–596
 bench polymerization, silica gel catalysts 36–37
 benzo-15-crown-5-functionalized terpolymers 612
 Bercaw–Miller oscillating metallocenes 277, 278
 β-hydrogen elimination (BHE) 90, 99–100
 β-hydrogen transfer (BHT) 97–99
 bimetallic alkylidene complexes 648, 651
 o-bis(diphenylphosphino)benzene
 1,2-bis(diphenylphosphino)ethene 600
 bis(η3-allyl)-nickel 626
 bis-triphenylsilyl chromate (BPSC) 414, 575
 block copolymers, multicomponent catalysts for 294
 Borealis Sirius catalyst system 292
 Born–Oppenheimer approximation 68
boron
 alkyl exchange 479
 BCl₃ 407
 reducing agents 433
 triethylboron cocatalyst 432, 481, 543, 544
branch dispersion index (BDI) 490, 491
BRICI/Sinopec N-Catalyst family 245
Brønsted acidity 59, 434, 435, 438
Bronsted-enhancing oxides 439
Brunauer, Emmett and Teller (BET) method 37
bulk densities, of polyethylene products 361
Buscio’s three-site model 265
n-butyl(ethyl)magnesium (BEM) 20
C

carbene mechanism 135
carbon monoxide, elasticity control 520
catalyst(s) see also specific types
active phase maldistribution in product particle morphologies 391–392
addition systems 168–170
chain-structure control sites 234
enantiomorphic site control 233
heterogeneous 235–239
regiospecificity 233
TiCl₃ catalysts 242
catalyst activation
chromic (III) acetate 404
crhemium 404
preparation 404–414
catalyst activity control
activation temperature 424–426
cocatalysts 430–433
CO reduction 427–430
Cr/alumina 435–437
fluoride 435
kinetic profile 418–419
porosity 414–418
reactor conditions 419–422
reactor poisons 422–424
sulfate treatment 437–439
titania, promotion by 433–435
chain isomerization
auto-copolymerization 103
chain walking 102
mechanism 102
Pd-dimine system 105, 106
polymer chain growth 104, 105
chain propagation, polyketones
backbiting 595–596
kinetic and thermodynamic control 595
Pd/phosphine catalysts 594
chain-structure control sites, in metallocene catalyst 234
chain termination
β-methyl elimination 97
role 96
Chauvin mechanism 632
chelate opening mechanisms 109
(P-O)-chelating phosphine sulfonate ligands 615
Chemtura 10
Chevron Phillips invention 61
chromate-dichromate partition 409
chromium catalyst 401
chromium loading
elasticity control, LCB 517–518
chromium–silica catalysts
activation temperature 42–44
chromium loading 40–42
impurities 44–46
modification by aluminum 48–49
modification by titanium 46–48
polymerization characteristics and HDPE resin properties 50
pore size 37–38
pore volume 40, 41
surface area 39–40
classical Dewar–Chatt–Duncanson model 78, 87
cocatalyst 190, 430–433
addition to broaden MW distribution 478–482
effect, in supported Ziegler catalysts 203
cogelation 46
comonomer distribution, crystallinity control 486–491
computational modeling,
polymerization catalysts
activation process 78–83
assessment of catalytic activity 110–113
basis sets, molecular calculations 72–73
catalyst properties 77–78
chain initiation 84–89
computational modeling, polymerization catalysts (cont’d)
 chain isomerization and branching 101–109
 chain propagation 89–96
 chain termination 96–101
 density functional theory 71–72
 geometry optimization 74–75
 naked cation approximation 115
 polymerization reactions modeling 113–116
 potential energy surface 68–70
 relativistic effects 73–74
 thermodynamics 75–76
 transition state optimization 74–75
 wave-function-based methods 70–72
 conductor-like screening model (COSMO) 79
 contact ion pair formation energy 79
 continuous solution polymerization 174–175
 copolymerization mechanism, crystallinity control 482–485
 copolymerization vs. homopolymerization 391
 CO reduction
 catalyst activity control 427–430
 crystallinity control 495–496
 Cossee–Arlman mechanism 135
 α-olefin polymerization 107
 Cossee–Arlman migratory insertion mechanism 231, 232
 Cr/AlPO₄
 crystallinity control 500
 molecular weight and MW distribution 474–476
 Cr/alumina
 catalyst activity control 435–437
 crystallinity control 498–499
 molecular weight and MW distribution 471–474
 Cr/aluminophosphate
 elasticity control, LCB 539–540
 Cr loading 423
 Cr/silica, elasticity control 536–537
 Cr/silica-titania
 catalysts, elasticity control 519
 two-step activation, molecular weight and MW distribution 458–471
 crystallinity control
 branch length 491–492
 comonomer distribution 486–491
 copolymerization mechanism 482–485
 CO reduction 495–496
 Cr/AlPO₄ 500
 Cr/alumina 498–499
 fluoride 498
 hydrosilanes 507–509
 incorporation efficiency 485–486
 partial CO reduction and selective poisoning 496–498
 porosity and copolymerization 500–501
 in situ comonomer generation 501–507
 titania influence on copolymerization 492–495
 crystallization fractionation (Crystaf) 207
 C₅-symmetric metallocones 276
 cyclopentadiene-functionalized polystyrene resin 291
 cyclopentadienyl derivatives 77

d
 Danckwerts surface renewal model 173
 deuterated ethylenes 220, 221
 DEZ 26–27
 dicationic Pd(II) systems 596
 dicyclopentadiene 644, 645
Index

- diether catalyst systems 254–255
- diethylaluminum ethoxide (DEALE) 9, 575
- diffuse basis functions 73
- 3,3-dimethyl allene 613
- dimethyl silicon-bridged indenyl complexes 270
- dinuclear vanadium(III) chloride complex 317
- d-limonene 643
- double-zeta (DZ) basis sets 72
- Dow UNIPOL PP process 239

E

- elasticity control, long-chain branching (LCB) 514–517
- activation temperature 534–536
- carbon monoxide 520
- chromium loading 517–518
- Cr/aluminophosphate 539–540
- from Cr/Silica 536–537
- Cr/silica–titania catalysts 519
- definition and measurement 511–512
- ethylene concentration 520
- generation mechanism 510–511
- importance 509–510
- low LCB catalysts 537–539
- placement within MW distribution 512–514
- and polymer yield 528–530
- and porosity 522–528
- from solution process 530–534
- speculation, generation mechanism 520–522
- titania influence 540–541
- emulsion-based ZN PP catalyst 248–250
- emulsion-quenching method 343–344
- environmental stress crack resistance (ESCR) 449, 481
- \(\eta^3\text{-allyl})(\sigma\text{-allyl-[bis(trimethylsilyl)amino]-bis(trimethylsilylimino)phosphorato-nickel} \quad 627
- ethyl benzoate-based catalysts 252–253
- ethylene–butene copolymers 402
- ethylene/CO copolymerizations 600
- backbone modification 603–604
- non-alternating polyketones 600–602
- substituent modification on phosphine groups 601–602
- ethylene concentration 443
- elasticity control, LCB 520
- ethylene dimerization by (imido) vanadium(V) complexes 330–332
- ethylene/1-hexene copolymerization 378, 379, 386, 387, 389, 393
- ethylene-methyl acrylate copolymerization 108
- ethylene polymer characterization 190
- ethylene polymerization 313, 314, 318, 320
- active center transformations, kinetics of 209–211
- activity profiles, for slurry and gas-phase operations 358–361
- bis(\(\eta^3\)-allyl)-nickel 626
- catalyst fragmentation 357, 358
- formal kinetic scheme 209–210
- high reaction order 211–212
- imidazolin-2-iminato and imidazolidin-2-iminato complexes 328, 329
- (imido)vanadium(V) dichloride complex catalysts 326
- ketimide analogues 327
- kinetic analysis 214, 216, 217
ethylene polymerization (cont’d)
 kinetic interpretation 217–221
Ni(acac)₂ 624, 627–628
Ni(COD)₂ 624, 627–628
Ni(η³-C₃H₅)₂ 628
α-olefins effect 212–213
Phillips chromium
catalyst 135–137
(η³-allyl)(σ-allyl-[bis(trimethylsilyl)
amino]-bis(trimethylsilylimino)
phosphorato)-nickel 627
Ti-modified Phillips catalyst
152–156
vanadium(V) complex
catalysts 322
ethylene/propylene
copolymerization 315, 316
Ewen’s symmetry rules 276, 277
exchange–correlation (XC)
functional 71
extended transition state natural
orbitals for chemical
valence (ETS-NOCV)
method 78

fifth-generation catalysts
diether catalyst systems 254–255
polyol ester-based catalyst
systems 255–256
succinate-based catalyst
systems 255–256
first generation catalysts 242
float trap 171
Flory component, of polymer
mixture 205–206
flow index 575
fluidized bed reactor 175
fluoride 476–478
 catalyst activity control 435
 crystallinity control 498
 molecular weight and MW
distribution 476–478
fluorinated alkoxides 647
fourth generation catalysts
 aliphatic ester donors 254
 alkoxy silane internal
donors 250–252
 bidentate phthalate donors
 244, 245
BRICI/Sinopec N-Catalyst
 family 245
emulsion-based ZN PP
catalyst 248–250
ethyl benzoate-based
catalysts 252–253
MgCl₂, nEtOH support
materials 246, 247
mixed donors 252–254
super high activity catalyst (SHAC)
 system 246
freeze-drying 35
friability measurements, of support
 particles 392–394
frontside vs. backside complexation
 process 85
frozen-core approximation 73
fume hoods, laboratory reactors
162–163

gas-phase ethylene
 copolymerization 387
gas-phase laboratory
 reactors 175–176
gas-phase polymerization
 procedure 348, 349
 silica-supported silyl chromate
catalysts 578–579
 slurry vs. 389–390
gas-phase reactors 365
 activity profiles 358–360
 molar masses for products
 from 363, 364
 particle density for products
 from 362, 363
gas-phase technology 402
geometry optimization 74–75
Green–Rooney mechanism 136, 440

h
Hartree–Fock (HF) method 70
hemi-isotactic polypropylene 230, 276
heterocenes
catalyst containing sulfur 272, 274
history 272–273
post-metallocenes 279–280
syndio- and hemi-tactic polymers 274, 276, 277
heterogeneous single-site PP catalyst
block copolymers, multicomponent catalysts for 294
clay-supported activators 288
grafting onto inorganic supports 281–287
multicomponent catalysis 292–294
polymer bound α-olefin polymerization precatalysts 288–292
self-supporting 292
tethering onto inorganic supports 287–288
heterophaseic impact copolymer 231, 232
hexavalent chromium 133
1-hexene 136
high-density polyethylene (HDPE) chromium catalyst 401
vs. LLDPE 402
Phillips catalyst 403
Phillips plant 401
homogeneous catalysts 270
homogeneous MAO-activated catalysts 278
homopolymerization vs. copolymerization 391
hydrosilanes, crystallinity control 507–509

i
(imido)(aryloxio)vanadium(V) complexes 333
(imido)vanadium(V) complexes 326–330
impact copolymers 231
INEOS Innovene PP technology 238
insertion barrier 89
in situ constrained geometry catalyst technology 626
in situ comonomer generation, crystallinity control 501–507
internal baffles 173
isobutylaluminum 7
isoprenylaluminum (IPRA) 5
isotactic chains 241
isotactic copolymer 605
isotactic polypropylene (iPP) configuration 230
from soluble single-site catalysts 267–269

j
Japan polypropylene (JPP) clay-supported metallocene system 288
Jones photochromic metallocenes 279
Josiphos biphosphine ligand system 608–609

k
Keim catalyst 626
Klapper’s reversible cross-linking concept 291
Kohn–Sham method 71

l
laboratory reactors and procedures, catalyst evaluation
autoclave reactors and safety relief devices 163–164
autoclave reactor setup 172–173
laboratory reactors and procedures, catalyst evaluation (cont’d)
catalyst addition 168–170
copolymerization 173–175
design 161–162
fume hoods 162–163
gas-phase laboratory reactors 175–176
modular reactor system 165–168
purification methods 164–165
temperature control 170–172
Langmuir–Hinshelwood mechanism 422
Linear low-density polyethylene (LLDPE) vs. HDPE 402
MW distribution 403
liquid flow meter 167
long-chain branching (LCB), elasticity control
activation temperature 514–517
alpha–omega dienes 534–536
carbon monoxide 520
chromium loading 517–518
Cr/aluminophosphate 539–540
from Cr/Silica 536–537
Cr/silica–titanium catalysts 519
definition and measurement 511–512
ethylene concentration 520
generation mechanism 510–511
importance 509–510
low LCB catalysts 537–539
placement within MW distribution 512–514
and polymer yield 528–530
and porosity 522–528
from solution process 530–534
speculation, generation mechanism 520–522
titania influence 540–541
long-chain branching (LCB) hypothesis 38
316L stainless steel 163
Lyondell/Basell Spheripol process 237–238
magnesium alkyls 18–24
modified BEM compositions 21–22
pricing and selection criteria for 22–24
properties 18–21
magnesium–titanium–silica catalysts 50
MAO/complex immobilization 283
mass flow meter 168
mass transfer limitations, of ethylene 358
Maxwell–Boltzmann distribution 111
melt flow ratio 191
melt index (MI) 37, 191
mesoporous silica SBA-15 60
metal alkyls
aluminum alkyls (see aluminum alkyls)
deinition 1
magnesium alkyls 18–24
in Ziegler–Natta catalysts 2–3
metal-catalyzed insertion polymerization 593
metallacycle mechanism 135, 136, 142
metallocene(s) 1
Bercaw–Miller oscillating metallocenes 277, 278
Jones photochromic metallocenes 279
polystyrene-immobilized metallocene 289
Waymouth–Coates oscillating metallocenes 277, 278
metallocene catalysts 403
chain-structure control sites 234
polymer-supported (see polymer-supported metallocene catalysts)
stereospecific families 266–267
structural developments 271, 272
metallocene/MAO catalysts 369, 370
methylacetylene cycloolimerization catalytic cycle 149
geometries of transition states 150
Gibbs free energies 151
TOFs for cycloaddition pathways 150, 151
methylaluminoxanes (MAO) 4, 79
conventional 13–14
cost evaluation 16–17
modified 14–15
nonhydrolytic 15–16
pricing and selection criteria of 17–18
MgCl$_2$:EtOH support materials 246, 247
MgCl$_2$ supported catalysts
active site concentration 259, 262
polymerization temperature effect 258–261
quenched-flow studies 265
stereoselectivity and hydrogen response 262–266
MgCl$_2$-supported TiCl$_4$ catalysts
dispersive X-ray analysis 354
emulsion-quenching method 343–344
polymer particle size effect 361–364
preparation procedure 342–345
reactive precipitation method 344–345
microspherical gels 33
migratory insertion mechanism of Cossee–Arlman 231, 232
modern polymerization catalyst production facility
blending 185
catalyst activation 184
catalyst support formation 183–184
decantation 184
drying 185
filtration methods 184–185
Nutsche filter 185
off-gas treatment 187
raw materials purification 182–183
reactant recovery and recycle 186
schematic illustration 182
solvent recovery and recycle 186
washing effect 184
waste treatment 186–187
modular reactor system
high pressure nitrogen cylinder 166
line pressure regulator 168
liquid flow meter 167
mass flow meter 168
reactor system modules 165, 166
solvent storage, liquid metering and solvent pumping module 168
molecular weight and MW distribution
activation conditions 448–450
cocatalysts addition to broaden MW distribution 478–482
Cr/AlPO$_4$ 474–476
Cr/alumina 471–474
Cr/silica-titania, two-step activation 458–471
fluoride 476–478
poisons 450–453
polymerization mechanism 439–442
porosity and molecular weight 453–455
molecular weight and MW distribution
(contin’d)
reaction time 445–448
reactor conditions 442–444
site heterogeneity 444–445
titania addition to control MW 455–458
molybdenum
bimetallic initiators 651
functional group tolerance 648–650
Standard Oil of Indiana 402
synthesis 646–648
monoterpenes 643–645
morphology-controlled polyethylene
particle production see MgCl2-supported TiCl4 catalysts

n
naked cation approximation 115
nanosized sulfated alumina activator
supports 59
nascent polymer particles
description 340
physical and morphological
properties 341
nascent prepolymer particles
bulk density and morphology
350, 351
catalyst fragmentation 353, 357
dispersive X-ray analysis 354, 355
initial prepolymer growth on catalyst
particles 353–358
particle size effect 352–353
quantitative EDX analyses 356
SEM images 355
nickel-catalyzed polyketone
synthesis 592
Ni-diimine catalyst 69, 70
Ni-salicylaldiminato complexes 83
non-petroleum-based solvents
monoterpenes polymerization
solvents 643–645
water-soluble catalysts 642–643
non-superimposable re and si
diastereoisomeric intermediate
complexes 233
nonuniformity of active centers,
Ti-based Ziegler catalysts
copolymer composition 207–208
molecular weight of
polymers 205–207
norbornene/CO copolymerizations
610–611
notched constant tension load (NCTL)
test 37
Nutsche filter 185

o
olefin coordination insertion
polymerization
vanadium(III) and vanadium(IV)
complexes 315–321
vanadium(V) complexes 321–332
olefin polymerization reactions 170
organoboron compounds 24–26
organometallics 1
catalysts, silica gel 52
organozinc compounds 26–27
(oxo)vanadium(V)/(imido)
complexes 323–325

p
partial CO reduction and selective
poisoning 496–498
particle-form technology 192–193
π-complexation energies 85–86
Pd-diimine system 89
Petronad Asia 11
Phillips chromium catalyst 131
alkyne cyclotrimerization
147–152
cluster models 137–139
computational studies 132
ethylene polymerization 135–137
limitations 156–157
molecular models of 138
polymerization mechanism and
Cr,ÝC bond formation
141–143
reactions in induction
period 143–147
reduction of 132–134
surface models 140–141
Ti-modified Phillips
catalyst 152–156
Phillips chromium oxide-based
catalysts 403
polarization functions 73
polyethylene (PE)
catalysts 31–32, 177
consumption, catalysts 32–33
jacketed pipeloop-shaped
reactor 402
loop-slurry process 402
MW distribution 403
particle-form (PF) process 402
Phillips plant 401
production (see supported
titanium/magnesium Ziegler
catalysts)
shear thinning 403
solution-form (SF) process 402
transition metal catalysts, types
of 403
polyethylene resins
classification 190
density 191
poly-(ketone-co-alcohol) thermoplastic
elastomers 617
polyketones 591
catalyst structure 593
chain propagation,
copolymerization 594–596
chemical modification 616–618
copolymer chain initiation and
termination 596–599
metal-catalyzed insertion
polymerization 593
radical polymerization 593
polymerization
gas-phase polymerization
procedure 348, 349
molecular weight and MW
distribution 439–442
particle fragmentation 360
rates and shapes of activity
profiles 390
slurry polymerization
procedure 347
temperature effect on activity
profiles 358, 359
polymer particle
growth 240–241
size effect 361–364
polymer properties 542–545
polymer-supported metallocene
catalysts
emulsion and suspension
polymerization 376
energy dispersive X-ray
analysis 377
examples of 371–373
impregnation method 374
industrial use requirements 379
in situ immobilization
method 376
nascent polyolefin products, bulk
densities of 394, 395
preparation methods
371–379
product fines and
densities 394–396
self-immobilization method 375
SEM images 376, 377
polymethylaluminoxane 13
polyol ester-based catalyst
systems 255–256
polyolefin catalysis 369
polyolefin catalyst production
diluent slurry polymerization
process 345
UNIPOL process 346
polypropylene (PP) 229

ABB LUMMUS’s NOVOLEN PP technology 239
Borealis Borstar PP technology 239
catalyst, demand for 177
copolymers and blends 231
Dow UNIPOL PP process 239
INEOS Innovene PP technology 238
Lyondell/Basell Spheripol process 237–238
microstructure sequences 230, 231
particle growth 240–241
Spherizone process 238
stereo-and regio-defects 234, 235
temperature rising elution fractionation 263
Ziegler–Natta catalysts 241–242
polystyrene-immobilized borate 289
polystyrene-immobilized metallocene 289
porosity
and copolymerization 500–501
elasticity control, LCB 522–528
and molecular weight 453–455
silica support, catalyst activity control 415
post-metallocenes 279–280
prepolymerization effect, on activity profiles see activity profiles
product particle morphologies

catalysts, active phase
maldistribution in 391–392
cauliflower-like particles 380–382, 385
concentric-shell particles 383, 386, 388
fines 379–380
hollow shell particles 382, 383, 385–386
homopolymerization vs. copolymerization 391
models for 389

polymerization rates and shapes of activity profiles 390
slurry vs. gas-phase polymerization 389–390
support particles, structure and properties of 392–394
uniformly porous product particles 384, 385, 388–389
propylene/CO copolymerizations
(R,S)-BINAPHOS ligand system 607–608
copolymer structure 604–607
Josiphos-based catalysts 608–609
propylene insertion reaction 94
protonolysis 597
pseudopotential/effective core potential approach 73
pulse-feed polymerization (PFP) 610
pyrogenic silica support 50

q
quantitative structure–activity relationship (QSAR) analysis 78
quenched-flow studies, of MgCl2-supported catalysts 265

r
radical polymerization, polyktones 593
reactive precipitation method 344–345
reactor poisons
catalyst activity control 422–424
molecular weight and MW distribution 450–453
regioselectivity, PCO copolymerizations 606
regiospecificity of polymerization 230
relativistic effects 73–74
ring-opening metathesis polymerizations (ROMP)
cyclic alkenes 631, 632
1,5-cyclooctadiene 645
in d-limonene 644
functional monomers 650
recommendations 632–634
ruthenium carbene complexes 636–637
termination, decomposition and isomerization mechanisms 639
ruthenium catalysts
functional group tolerance 641–642
non-petroleum-based solvents 642–645
in plant oil applications 646
synthesis 634–641

silica gel catalysts
bench polymerization 36–37
catalyst and polymer characterization 37
chromium–silica catalysts (see chromium–silica catalysts)
dried catalyst support 34–35
finished catalyst 35–36
hydrogel precursor 33–34
manufacturing process 34
organometallic catalysts 52
polyolefin catalyst-grade silicas 36
Ziegler–Natta catalysts 49–52
silica-supported silyl chromate catalysts
applications 579–580
catalyst structure 575–577
fluid-bed HDPE process conditions 579
gas-phase polymerization 578–579
oxidation states 577
patent and patent applications 582–587
physical property 581–582
polymerization reactions 584
polyolefin-grade silica supports 586
pore size distribution 586
SEC data for polymers made with 581
silyl chromate catalyst development 573–575
slurry polymerization 578
silica-supported Ziegler catalysts
carrier/support from anhydrous MgCl₂ 199, 200
chemical impregnation of porous silica 197–199
MgCl₂ supports/carriers 202
physical impregnation of soluble Ti/Mg species 195–196
soluble MgCl₂ complexes 200–202
synthesis stages 193, 194

s
safety catch-up tank 164
scale-up of catalyst recipes
Büchi reactor 181
considerations 180–181
dimensional analysis 178–179
heat and mass transfer 180
modern polymerization catalyst production facility 182–187
reaction kinetics 179–180
record keeping 187
safety precautions 187
Schlenk equilibrium 18
Schrock molybdenum catalysts 647
Schrodinger equation 68
second-generation ruthenium carbene complexes 640
second-generation TiCl₃ catalysts 242
selected stereoselective post-metallocenes 280
self-extinguishing/limiting catalysts concept 254
side-chain liquid-crystal polymers (SCLCPs) 613
Sigma-Aldrich 11
silica 370–371
silica–titania cogels 46
silsesquioxane-supported model 137
silyl chlorides 646
silyl chromate catalysts
development 573–575
stress crack resistance
properties 52
single-zeta (SZ) basis sets 72
sixth-generation Ziegler: phthalate
replacement 256–258
slurry polymerization
vs. gas-phase polymerization
389–390
procedure 347
silica-supported silyl chromate
catalysts 578
slurry reactors 365
activity profiles 360–361
molar masses for products
from 363, 364
particle density for products
from 362, 363
sodium effect, chromium–silica
catalysts 44–46
solvent purification 164–165
Spheripol process 237–238
Spherizone process 238
split range temperature control
system 171
stereoregularity of copolymers 606
stereoselectivity
and hydrogen response, MgCl₂
supported catalysts 262–266
Terano “island” site model 264
stereospecificity of polymerization 230
stereospecific metallocene catalyst
camilies 266–267
steric congestion 96
stirred-bed gas-phase
reactor 175–176
substituted indenes 270–272
succinate-based catalyst systems
255–256
sulfate treatment 437–439
supercritical drying 35
super high activity catalyst (SHAC)
system 246
supported titanium/magnesium
Ziegler catalysts 189
active centers 221–224
bimetallic polymerization
catalysts 204–205
cocatalyst effect 203
ethylene polymerization
reactions 209–221
nonuniformity of active
centers 205–208
porous MgCl₂ particles
199–202
silica 193–199
support particles, structure and
properties of 392–394
Sure/Seal package 11
surface chromate species 132–133
surface impregnation 46
surface models, Phillips chromium
catalyst 140–141
syndio-and hemi-tactic
polymers 274–277
syndiospecific propylene
polymerization 314
syndiotactic copolymer 605
syndiotactic polymers 613
syndiotactic polypropylene 230

t

tacticity 229

t-butylaluminoxane16 (TBAO) 16
Tebbe reagent 617
temperature control, laboratory
reactors 170–172
temperature rising elution
fractionation (TREF) analysis,
of polypropylene 263
Terano “island” site model, of
stereoselectivity 264
terpolymerization (ethylene, propylene and CO) 609–610
third-generation catalysts
activated MgCl$_2$ development 243
internal/external donors 243–244
ruthenium catalysts 640
TiCl$_3$ catalysts 242
titania
addition to control MW 455–458
catalyst activity control 433–435
copolymerization, crystallinity control 492–495
elasticity control, LCB 540–541
titanium-modified chrome–silica catalysts 46–48
transition state optimization 74–75
triethylaluminum cocatalyst influence 433
triethylboron cocatalyst influence 432
triisobutylaluminum (TIBAL) 4
triple-zeta (TZ) basis sets 72–73
tris(pentafluorophenyl)borane 25
vanadium(IV) complexes 321
vanadium(V) complexes
ethylene dimerization by (imido) vanadium(V) complexes 330–332
phenolate ancillary chelate ligands 325
(imido)vanadium(V) complexes 326–330
(oxo)vanadium(V) or (imido) complexes 323–325
VCl$_4$–AlBr$_3$–AlPh$_3$ catalyst system 313, 314
vinylamine comonomer 108
VOCl$_3$ 321, 322
W
water-gas shift reaction 464
water-soluble metathesis catalysts 642–643
Waymouth–Coates oscillating metallocenes 277, 278
X
X-ray crystallography 625
Z
Ziegler, K. 401
Ziegler catalysts 190
Ziegler direct process technology 5
Ziegler–Natta catalysts 339, 340, 369
metal alkyls 2–3
silica surface chemistry and pore size 51–52
stereoregulation 403
Ziegler–Natta PP catalysts 241–242
catalyst activity vs. polymerization temperature 259, 260
intrinsic viscosity vs. polymerization temperature 259, 260
xylene insoluble vs. polymerization temperature 259, 261
Ziegler–Rauk energy decomposition analysis 86
Ziegler titanium/vanadium halide catalysts 403
Ziegler-type vanadium catalysts characteristics and applications 313–315
disadvantages 314
ethylene polymerization 314

olefin coordination insertion polymerization
vanadium(III) and vanadium(IV) complexes 315–321
vanadium(V) complexes 321–332
syndiospecific propylene polymerization 314
zirconocene structures 273, 275
ZrBz₄-sulfated alumina system 59