Contents

Preface ix

1 Matrix Algebra 1
 1.1 Definitions 1
 1.2 Addition and Subtraction 2
 1.3 Multiplication 2
 1.4 Determinant 3
 1.5 Inverse Matrix 3
 1.6 Counting Rules 4
 1.7 Systems of Equations 4
 1.7.1 Systems of Equations with Only Unknown Components in the Vector \mathbf{a} 5
 1.7.2 Systems of Equations with Known and Unknown Components in the Vector \mathbf{a} 6
 1.7.3 Eigenvalue Problems 8
 Exercises 10

2 Systems of Connected Springs 13
 2.1 Spring Relations 16
 2.2 Spring Element 16
 2.3 Systems of Springs 17
 Exercises 30

3 Bars and Trusses 31
 3.1 The Differential Equation for Bar Action 33
 3.1.1 Definitions 33
 3.1.2 The Material Level 35
 3.1.3 The Cross-Section Level 38
 3.1.4 Bar Action 41
 3.2 Bar Element 43
 3.2.1 Definitions 43
 3.2.2 Solving the Differential Equation 43
 3.2.3 From Local to Global Coordinates 51
 3.3 Trusses 55
 Exercises 66
Contents

4 Beams and Frames

4.1 The Differential Equation for Beam Action
4.1.1 Definitions
4.1.2 The Material Level
4.1.3 The Cross-Section Level
4.1.4 Beam Action
4.2 Beam Element
4.2.1 Definitions
4.2.2 Solving the Differential Equation for Beam Action
4.2.3 Beam Element with Six Degrees of Freedom
4.2.4 From Local to Global Directions
4.3 Frames
Exercises

5 Modelling at the System Level

5.1 Symmetry Properties
5.2 The Structure and the System of Equations
5.2.1 The Deformations and Displacements of the System
5.2.2 The Forces and Equilibria of the System
5.2.3 The Stiffness of the System
5.3 Structural Design and Simplified Manual Calculations
5.3.1 Characterising Structures
5.3.2 Axial and Bending Stiffness
5.3.3 Reducing the Number of Degrees of Freedom
5.3.4 Manual Calculation Using Elementary Cases
Exercises

6 Flexible Supports

6.1 Flexible Supports at Nodes
6.2 Foundation on Flexible Support
6.2.1 The Constitutive Relations of the Connection Point
6.2.2 The Constitutive Relation of the Base Surface
6.2.3 Constitutive Relation for the Support Point of the Structure
6.3 Bar with Axial Springs
6.3.1 The Differential Equation for Bar Action with Axial Springs
6.3.2 Bar Element
6.4 Beam on Elastic Spring Foundation
6.4.1 The Differential Equation for Beam Action with Transverse Springs
6.4.2 Beam Element
Exercises

7 Three-Dimensional Structures

7.1 Three-Dimensional Bar Element
7.2 Three-Dimensional Trusses
7.3 The Differential Equation for Torsional Action
7.3.1 Definitions 194
7.3.2 The Material Level 195
7.3.3 The Cross-Section Level 197
7.3.4 Torsional Action 202
7.4 Three-Dimensional Beam Element 203
7.4.1 Element for Torsional Action 204
7.4.2 Beam Element with 12 Degrees of Freedom 205
7.4.3 From Local to Global Directions 206
7.5 Three-Dimensional Frames 209
Exercises 213

8 Flows in Networks 217
8.1 Heat Transport 219
8.1.1 Definitions 219
8.1.2 The Material Level 222
8.1.3 The Cross-Section Level 224
8.1.4 The Equation for Heat Conduction 225
8.1.5 Convection and Radiation 227
8.2 Element for Heat Transport 229
8.2.1 Definitions 230
8.2.2 Solving the Heat Conduction Equation 230
8.3 Networks of One-Dimensional Heat-Conducting Elements 235
8.4 Analogies 242
8.4.1 Diffusion – Fick’s Law 242
8.4.2 Liquid Flow in Porous Media – Darcy’s Law 243
8.4.3 Laminar Pipe Flow – Poiseuille’s Law 244
8.4.4 Electricity – Ohm’s Law 245
8.4.5 Summary 246
Exercises 247

9 Geometrical Non-Linearity 251
9.1 Methods of Calculation 252
9.2 Trusses with Geometrical Non-Linearity Considered 255
9.2.1 The Differential Equation for Bar Action 256
9.2.2 Bar Element 257
9.2.3 Trusses 260
9.3 Frames with Geometrical Non-Linearity Considered 262
9.3.1 The Differential Equation for Beam Action 262
9.3.2 Beam Element 265
9.3.3 Frames 274
9.4 Three-Dimensional Geometric Non-Linearity 277
Exercises 278

10 Material Non-Linearity 281
10.1 Calculation Procedures 282
10.2 Elastic–Perfectly Plastic Material 284
Contents

10.3 Trusses with Material Non-Linearity Considered 285
10.4 Frames with Material Non-Linearity Considered 289
Exercises .. 298

Appendix A Notations .. 301
Appendix B Answers to the Exercises 303
Index .. 323