addition rule of probability 99–101
flooding example 100–1
new product example 100
additive models 48
aggregating judgments see decisions involving
groups
aggregating values, assumptions 53–5
aggregating values and utilities 316–19
AHP (analytic hierarchy process) (Saaty, T.L.)
75–87
about AHP 75–6
axioms of:
expectation axiom 84
homogeneity axiom 83–4
reciprocal axiom 83
synthesis axiom 84
AHP comparisons to SMART 84–7
criticisms of AHP
conversion from verbal to numeric scale 85
meaningfulness of responses to questions 86
new alternatives can reverse rank of those
existing 86–7
number of comparisons can be large 87
problems of 1–9 scale 85–6
relative strengths of AHP
redundancy allows checking of consistency 85
simplicity of pairwise comparisons 85
versatility 85
AHP using EXPERT CHOICE software 75–87
1. setting up the decision hierarchy 76
2. making pairwise comparisons of attributes
and alternatives 77–8
comparing preferences 78
tables for comparisons 77–8
use of verbal responses 77
3. transforming comparisons into weights and
checking consistency 78–80
converting tables to weights 78–9
inconsistency ratio 79–80
using EXPERT CHOICE software 79–80
4. use weights to obtain scores and make
decisions 80
5. perform sensitivity analysis 80–1
food processing company example 75–80
AHP using hand calculations 81–3
1. table preparation 81–2
2. calculating/checking the inconsistency ratio
82–3
Allais’s paradox 141–2
anchoring and adjustment heuristic 256–60
associated biases
insufficient adjustment 256–7
overconfidence 259–60
overestimating the probability of conjunctive
events 257–8
underestimating the probability
for disjunctive events 258
analytic hierarchy process see under AHP
approval voting (Ferrell, W.R.) 316
Arrow, K.J.
four conditions for group preferences 315–16
Impossibility Theorem 316
artificial intelligence (AI) 437–8
Asian disease problem 366–7
assessment see probability assessment
asymmetric dominance effect 25
attribute options performance 39–44
attribute image 40
direct rating 40–2
value functions 42–4
attribute weights 44–8
importance weights 45, 46
normalized weights 46
raw weights 46
swing weights 46
for working conditions 47
attributes
 choosing by
 attribute salience effect 26
 unique attributes 25–7
 mutually preference independent 54–5
availability heuristic 248–51
 associated biases
 ease of imagination not related to probability 249
 ease of recall not associated with probability 249
 illusory correlation 250–1

Bayes’ theorem 222–7
 with aggregating probabilities 314
 asymmetric test 223
 decision problem, retailer example 230–2
 electronic components failure example 222–5
 probability tree for 224
 equipment efficiency example 225
 posterior analysis 230–2
 posterior probability 222, 228–9
 prior probability 222, 227–8
 sales manager example 225–7
 see also new information, revising judgments with
 benefit/cost trading 48–50
biases
 confirmation bias 278–9
 hindsight bias 279
 judgmental biases 260–2
 see also probability assessment, heuristics and biases
 bisection of value functions 43–4
 bolstering, and threats 377–8, 381
 bootstrapping/policy capturing model 451–2
 bounded rationality 15–16
 brainstorming 303–5
 four basic rules 303
 Two Valleys Company example 304
 Brier score (BS) 289–90
 buck passing, and threats 377–8

calibration of probability valuation 288
 certainty-equivalence approach 137
 cognitive illusions 388
 cognitive inertia 372–3
 and psychological laboratory studies 380–1
 see also inertia in decision making
 coherence in probability judgments 277–8, 286–7
 commons dilemma 337
 comparison of decision-aiding techniques 455–7
 bootstrapping 455, 456
decision analysis 455
 decision conferencing techniques 457
 decision trees 455
 decisions made to work problems 457
 and error rates 457
 expert systems 456
 multi-attribute value theory 456
 primacy of human judgment 456
 scenario planning 455–6
 sensitivity analysis 455, 457
 validity/valuation issues 457
 complementary events 101–2
 complex decisions 1–3
 complex structure 2–3
 complexity, getting hooked on 364–5
 conditional probabilities 101–2
 cancer probability example 101–2
 Condorcet’s paradox 315
 confirmation bias 278–9
 conflict theory (Janis and Mann) 377
 conjunction fallacy 255–6
 conservatism, psychological studies 374, 376
 continuous probability distributions 107
 with decision trees 168–9
 cost partitioning choices 28
 cost/benefit trading 48–50
 efficient frontier 49–50
 creativity in problem solving 361–3
 credence decomposition 187
 cumulative distribution function (cdf) 109
 with stochastic dominance 199
decision analysis 412–13
 final advice 461–3
 avoid rushing decisions 461
 check validity of assumptions 461–2
 confirm adequacy of alternatives 462
 confirm decision merits the effort made 462–3
 who to involve 462
 partial decision analysis 4
 and rationality 4
 role of 3–5
 shampoo manufacturing, funds allocation 10–11
 summary of techniques 463–5
 UK social services, prioritizing 9
 US military, systems acquisition 8
 see also scenario planning, combining with decision analysis
decision analysis, application examples 6–12
 building society front office 10
 Du Pont, improves decision making 6
 EXEL Logistics, WAN selection 9
 financial services, planning 9–10
INDEX

Finland, decision-making 10
Germany, electric-drive vehicles 11–12
International Chernobyl Project 6–7
MIT, prioritizing 8
NHS requirements 11
Nokia and Statoil, early warning signals 21
pharmaceuticals, project selection 7
Phillips Petroleum Company, petroleum exploration 7
decision conferencing 329–31
decision analyst function 329
fundamental objective 329–30
McCatt and Rohrbough views on 330–1
modeling procedure 329
Phillips views on 329–30
decision framing 361–71
complexity, getting hooked on 364–5
telephone handset example 365
creativity in problem solving 361–3
nine dot problem example 362–3
tree jug problem example 361–2
frame blindness 364
how people frame decisions 363–4
TV viewing figures example 363
imposing imaginary constraints 365
Kodak and instant photograph example 365
narrow bracketing of decisions 371–2
reference point sensitivity 365–71
Asian disease problem 366–7
Olympic medals example 365–6
prospect theory 367–71
solving the wrong problem 364
car manufacturing example 364
see also inertia in decision making
decision tables 118–19
decision trees 161–79
about decision trees 161–2, 179
branches 162
constructing decision trees 162–4
food-processor example 163–4
with continuous probability distributions 168–9
extended Pearson-Tukey (EP-T) approximation 168–9
decision nodes 164
DPL software package 166
with EMV criterion 164–5
optimal policy determination 164–6
rollback method 165–7
probability symbols 162
Tree Age Pro software package 166
with utility function 166–8
and multi-attribute utilities 168
decision trees, structure
assessment/representation 170–5
Fischhoff et al. investigations 174
representation issues 175–9
with fault trees 174, 175
see also influence diagrams
decision-making under uncertainty see uncertainty in decision making
decisions, good and bad 5–6
decisions involving groups 309–31
about decisions by groups 309–10, 329
aggregating judgments, general 311–13
aggregating preference judgments 314–19
Arrow’s four conditions 315–16
Arrow’s Impossibility Theorem 316
Condorcet’s paradox 315
Ferrell’s approval voting 316
holiday destinations example 313–14
intensities of preferences 316–17
preference orderings 315–16
values and utilities 316–19
aggregating probability judgments 313–14
behavioral aggregation 309
decision conferencing 329–31
Delphi method 320–6
mathematical aggregation 309, 310–11
accountant and production manager’s viewpoints example 310–11
prediction markets 326–8
unstructured group processes 319–20
space shuttle example 319–20
weighted averaging of judgments 312–13
decoy effects 24–5
phantom decoys 25
defensive avoidance 377–8
Delphi iterative decision method 320–6
appropriate applications 322–3
devil’s advocacy 325–6
dialectical inquiry 325–6
heterogeneity in 323–5
phases 320
Rowe and Wright summary 322–3
with scenario planning 412–13
structure approach 320, 321–2
dependent events, and probability 103
designing decisions for best choice 460–1
organ donation example 460
pension schemes example 460
printed itemized bills example 460–1
devil’s advocacy 325–6
dialectical inquiry 325–6
discrete probability distributions 107
diversification of strategy 432
divide and conquer orientation 3
DPL software package 166

efficient frontier considerations 49–50
effort-accuracy framework 24
eliciting probabilities see probability assessment
elimination by aspects (EBA) heuristic 19–20
emotion and choice 26–7
Equity software 348–50
‘Even Swaps’ for multiple decision making
(Hammond, J.S. et al) 68–75
about Even Swaps 68–9
component selection example 69–72
consequences tables 69
dominance of options 69–70
limitations compared to SMART 73–5
may not have neutral effect on choice 74–5
needs practice to apply 73–4
output less informative 74
relative strengths compared to SMART 73
avoids assigning scores 73
avoids determining swing weights 73
closer to natural decision process 73
to apply
eliminate attributes 70–2
identify and eliminate dominated options 69–70
identify and eliminate practically dominated options 70
event trees 290–1
events, and probability 96
exhaustive lists of events 99
expected monetary value (EMV) criterion 119–21
food manufacturer example 120–1
limitations 121–4
St Petersburg paradox 122–3
sensitivity analysis 120–1
see also utility/utility function
expected value of imperfect information 235–9
expected value of perfect information (EVPI) 232–5
expected values, and probability 110–11
EXPERT CHOICE computer package 75
used with AHP 79–81
expert systems 438–50
about expert systems 437–9, 450
artificial intelligence (AI) 437–8
examples of use as decision aids, decision makers and trainers 438–9
expert knowledge in expert systems 440–51
control structure/inference engine 441
forward/backward chaining 441
psychological aspects 441–2
expert knowledge and knowledge engineering 439–40
expert systems in financial services 443–7
back office fraud detection 448–9
at American Express 448–9
at Chemical Bank 448
life underwriting 443–7
point-of-sale advice-giving 449–50
expert systems in marketing 442–3
scanner systems 442
Texas Instruments ES 2 system 442–3
extended Pearson-Tukey (EP-T) approximation 168–9
limitations 169
fault trees 174, 175, 291–2
a car will not start example 173
Ferrell, W.R.: approval voting 316
flexibility of strategy 432
frame blindness, in decision making 364, 372
groups, decisions involving see decisions involving groups
heuristics
about heuristics 16
anchoring and adjustment heuristic 256–60
availability heuristic 248–51
elimination by aspects 19–20
lexicographic strategy 18–19
minimalist strategy heuristic 17–18
for multiple objectives 16–24
reason-based choice heuristic 21–3
recognition heuristic 16–17
representativeness heuristic 251–6
satisficing 20–1
semi-lexicographic strategy 19
take the last heuristic 18
see also probability assessment, heuristics and biases
hindsight bias 279
HIPRE 3+ (Hierarchial PREference analysis) software 75
holistic judgments 55–6
Impossibility Theorem (Arrow, K.J.) 316
inappropriate mental models (Barr et al.) 373
independence of irrelevant alternatives 22–3
independent events, and probability 103
inertia in decision making 372–82
bolstering 377–8, 381
cognitive inertia 372–3, 380–1
INDEX

frame awareness issues (Russo and Schoemaker) 378–80
frame analysis worksheet 370, 379
frame blindness 372
inappropriate mental models (Barr et al.) 373
non-rational escalation of commitment 376–7
Concorde example 377
Tennessee-Tombigbee water project example 376–7
overconfidence 380
overcoming inertia 378–80
reference points 379
psychological laboratory studies 374–6, 380–1
real-world studies 372–4
Ford’s black cars 372
Johnson’s UK clothing studies 373
influence diagrams 176–8
initial intuitions see snap decisions/initial intuitions
insurability of strategy 432
interval 41
interval scale 41
intuitive/analytical conflicts 55–7
joint probability 104
judgmental biases
believing desirable outcomes are more probable 260–1
biased assessment of covariation 261–2
justifying made choices 27–8
Keeney, R.L. on decision analysis 4
lexicographic strategy heuristic 18–19
semi-lexicographic strategy 19
life underwriting, expert systems for 443
linear models 451–5
heart failure example 453–4
using equal weights 452
why not more prevalent 453–5
log-odds scale 292–3
MACBETH (Measuring Attractiveness by a Categorical-Based Evaluation Technique) 88–9
marginal probabilities 102–3
cancer probability example 102–3
maximum criterion 118–19
food manufacturer example 118–19
mean-standard deviation screening method 203–6
mental accounting 371–2
minimalist strategy heuristic 17–18
minimax criterion 119
modeling dependence relationships, and simulation 212–13
Monte Carlo simulation 188–91
random numbers with 189
multi-attribute utilities 143–52
about multi-attribute utilities 143, 152
Decanal Engineering Corporation example 143–51
deriving the function, stages for 146–51
interpretation 151
mutual utility independence 145–6
multiple objectives, decisions for 15–29
about multiple objectives 2, 15–16, 28–9
choosing by unique attributes 25–6
cost partitioning 28
decoy effects 24–5
emotion and choice 26–7
heuristics for 16–24
justifying made choices 27–8
phantom decoys 25
see also Even Swaps; SMART; SMARTER
multiple stakeholders 3
multiplication rule, and probability 103–5
bridge construction example 104
new product in Florida example 104–5
mutual utility independence 143–5
mutually exclusive events 99–101
addition rule 99–101
negotiation problems/models 350–5
about negotiation models 351
applications 354–5
assessments of preferences and tradeoffs 354
efficient frontier identification 352–3
engineering company example 351–5
management/union value functions/weights 351–2
tentative values for deal 351, 353
net present value (NPV) method, with simulation 207–12
new information, revising judgments with 221–40
about revising judgments 221, 239–40
effect of new information 227–30
gas test drilling example 227–8
San Marino nuclear power example 229–30
value of new information, assessment of 232–9
expected value of imperfect information (EVII) 235–9
expected value of perfect information (EVPI) 232–5
farm soil problem example 232–9
preposterior analysis 232
see also Bayes’ theorem
nine dot problem 362–3
non-compensatory strategy 19
non-rational escalation of commitment 376–7
Concorde example 377
Tennessee-Tombigbee water project example 376–7
outcomes
 good and bad 5–6
 and probability 96
partial decision analysis 4
phantom decoys 25
policy capturing/bootsrapping model 451–2
posterior analysis 230–2
see also Bayes’ theorem
posterior probability 222, 228–9
see also Bayes’ theorem
prediction markets for group decisions 326–8
 advantages/disadvantages 327–8
 Delphi process comparisons 328
 market reliability issues 327
 Presidential election example 326
 software available 327
preference orderings 315–16
pre-posterior analysis 232
present value factor 207
prior probability 222, 227–8
see also Bayes’ theorem
probability 95–112
 about probability 95–6, 112
 addition rule 99–101
 classical approach 96–7
 complementary events 101–2
 conditional probabilities 102–3
 dependent/independent events 103
 events 96
 exhaustive lists of events 99
 expected values 110–11
 joint probability 104
 marginal probabilities 102–3
 multiplication rule 103–5
 mutually exclusive events 99–101
 outcomes 96
 relative frequency approach 97–8
 subjective approach 98–9
 and uncertainty 95
probability assessment 275–94
 assessment questions 275–6
 coherence in judgments 277–8, 286–7
 communicating estimates 293
 confirmation bias 278–9
 consistency and coherence checks 285–8
 Brier score (BS) 289–90
 iterative resolution of departures 287–8
 representativeness 287
 hindsight bias 279
 methods comparisons 285
 methods for individual probabilities
 direct assessments 281
 probability wheel 281–2
 methods for probability distributions
 graph drawing 283–5
 probability method 282–3
 preparing for
 conditioning 280
 motivating 279–80
 structuring 280
 rare event assessments 290–3
 event trees 290–1
 fault trees 291–2
 log-odds scale 292–3
 validity of probabilities 288–90
 calibration 288
 verbal meanings of probability 276–7
probability assessment, heuristics and biases 245–69
 about heuristics and biases 245
 anchoring and adjustment heuristic 256–60
 availability heuristic 245–8
 probability judgment, is it so poor? 262–9
 questionnaire to test judgment 245–8
 representativeness heuristic 251–6
probability density 108
probability density function (pdf) 108
probability-equivalence 125
probability distributions 106–10
 about probability distributions 106–7
 continuous probability distributions 107
 cumulative distribution function (cdf) 109
 discrete probability distributions 107
 with simulation 209–11
 with uncertainty 298
probability judgment, is it so poor? 262–9
 citation bias 264
 laboratory tasks may be untypical 263
 people think in terms of frequencies not probabilities 266–9
 real-world studies suggest better performance 264–6
 study subjects may be unrepresentative 262–3
 subjects may be poorly motivated 264
 subjects may misunderstand tasks 263–4
INDEX

probability theory axioms
 axiom 1. positiveness 111
 axiom 2. certainty 111
 axiom 3. unions 112
probability trees 105–6
politics example 105–6
probability wheel 281–2
problem solving
 with creativity 361–3
 nine dot problem example 362–3
 three jug problem example 361–2
procrastination, and threats 377–8
prospect theory 367–71
psychological laboratory studies 374–6
 anchoring and adjustment (Tversky and Kahneman) 375
 confirmation bias (Evans) 375–6
 symbols on cards example 375–6
conservatism 374, 376
poker chip example 374
questionnaire to test judgment 245–8
random numbers with Monte Carlo simulation 189
rank-sum weights, Roberts/Goodwin calculation method 68
rationality 4
reason-based choice heuristic 21–3
recognition heuristic 16–17
reliability, and probability 97–8
representativeness 287
representativeness heuristic 251–6
 biases associated
 conjunction fallacy 255–6
 expecting chance to be self-correcting 253
 expecting sequences of events to appear random 253
 ignoring base-rate frequencies 251–2
 ignoring regression to the mean 254–5
requisite decision model concept (Phillips) 56
resource allocation 337–51
 about resource allocation 337–8
analysis stages
 1. identify areas, resources and benefits 339–40
 2. identify strategies for regions 340
 3. assess costs and benefits of the strategies 341–2
 4. measure benefits 342–4
 5. compare the benefit’s importance 344–6
 6. identify costs/benefits of the packages 346–7
 7. propose a package 347–8
 8. use computer to compare packages 348
 9. sensitivity analysis 348–50
commons dilemma 337
Equity software 348–50
furniture company example 338–9
modeling the problems 338–9
see also negotiation problems/models
revising judgments see new information, revising judgments with
risk, attitude to 2
risk analysis 188
risk management 297–307
 about risk and uncertainty management 297–8, 305
see also uncertainty management
rollback method for optimal policy 165–7
satisficing 20–1
scenario case study, intervention in the National Health Service 402–6
demographics and health demand 404–5
innovation, health and wealth 405
patient empowerment 403
skill mix and delivery/location of care 403–4
student engagement and medical careers 404
scenario case study, intervention in the public sector 406–13
 about the scenario 406–7
 benefits from scenario interventions 411–12
 comparative views on scenario planning, decision analysis and Delphi 412–13
 high-impact/low-predictability events
 central agencies; help or hindrance 407
 opportunities/constraints from new technologies 407
 information mapping 407
 partner agendas 407
 public ownership 407
scenario dimensions
 democratic process 408
 value creation 408
technology serves scenario 410–13
 Northshire Council example 411
titles and key identifiers
 forward to the past 409
 free enterprise 409–10
 people’s kailyard 410
 technology serves 410–11
scenario construction: driving forces method 397–402
 contingency action too early warning 402
 degrees of predictability and uncertainty 397
scenario construction... (cont’d)
South African four scenarios example 397–9
flight of the flamingoes 399
Icarus 398–9
lame duck 398
ostrich 398
stakeholder structuring space 401
steps for scenario construction 399–400
scenario construction: extreme world method 389–92
eight major steps for 390
semiconductor manufacturing example 389–90
key uncertainties 391
positive impact uncertainties 390
predetermined elements 390
predetermined trends 390
scenario negative: plastics dominate 392
scenario positive: technology boom 392
scenario status quo: business as usual 392
scenario planning 387–420t
about scenario planning 387–9, 419–20
case study; an unsuccessful scenario of a company dilemma 414–17
cognitive illusions, straight lines with arrows example 388
dealing with low predictability 417–19
issues and limitations 414–19
multiple scenarios 388
organizational context and scenario planning 404
Saddam’s invasion of Kuwait example 387–8
subjective probabilities 389
scenario planning, combining with decision analysis 423–34
extensions/alternatives to 431–4
assignment of scores and weights 432–3
checklist of key objectives 431–2
ranking process 432
weights for difference scenarios 433
stages of approach 424
scenario case study, newly privatized mail company 425–31
1. formulate objectives 425
2. formulate scenarios 425–7
scenario 1. dog fight 426–7
scenario 2. mail mountain 426
3. design alternative strategies 427
4. rank and allocate scores 427–8
5. rank and weight objectives 428–9
6. obtain aggregate scores 429–30
7. produce table of aggregate scores 430–1
8. perform sensitivity analysis 431
scenario usage 392–6
business school example 393–4
elements for success
competitive advantage 393
distinctive competencies 393
growth mechanisms 393
stimulating creative thinking 394–6
global perspective 396
regional perspective 396
systemic linking of competencies and strengths 393
‘wind tunneling’ (Kees vander Heijden) 394
sensitivity analysis 51–2, 120–1
sequential decision-making 20–1
sequential decisions 3
simulation for decision problems 187–213
about use of simulation 187–8, 213
determining highest utility 198–9
Elite Pottery Company example 191–7
about the example 191–2
1. identifying the factors 192–3
2. formulating a model 193
3. preliminary sensitivity analysis 193–4
4. assessing probability distributions 195
5. performing the simulation 196
6. sensitivity analysis on the results 196
7. comparing alternative actions 197
mean-standard deviation screening method 203–6
Monte Carlo simulation 188–91
plotting two distributions 198
simulation runs 189–90
estimating probabilities from 190–1
reliability issues 191
stochastic dominance 199–203
first degree 199–200
from cdfs 199
second degree 200–3
simulation for investment decisions 207–13
Alpha and Beta investments example 207–13
applying the simulation 209–11
probability distributions 209–11
and modeling dependence relationships 212–13
net present value (NPV) method 207–13
utility and NPV 211–12
present value factor 207
single attribute utility 124–30
SMART (simple multi-attribute rating technique) 33–58
about SMART 33–4, 57–8
additive model 48
aggregating the benefits 48
analysis stages 35–6
assumptions when aggregating values 53–5
attributes, definition 34
attribute weights 44–7
axioms 52–3
decidability 52
finite upper and lower bounds for value 53
summation 53
transitivity 53
benefits/costs trading 48–50
intuition and analysis conflicts 55–7
objectives, Keeney/Raiffa definition 34
office location example 35–58
about the example 35
options performance measurements 39–44
direct rating 40–2
value functions 42–4
sensitivity analysis 51–2
scenario planning, stages in 424
value tree construction 36–9
value and utility, definition 34–5
see also AHP comparisons to SMART
SMART SWAPS 74
SMARTER (SMART Exploiting Ranks) 65–8
about SMARTER 65
differences from SMART 65–6, 67–8
rank-sum weights, Roberts/Goodwin
calculation method 68
ranking of swings 66–7
reservations 67
ROC (rank order centroid) 66–8
ROC weights concerns 68
snap decisions/initial intuitions 457–60
golfers and time pressure 458
intuitive catching 458
long-term experience effects 459
recognition heuristic 459
St Petersburg paradox 122–3
statistical models of judgment 450–7
extra model information 453
human model comparisons 453
linear models 451–5
heart failure example 453–4
using equal weights 452
why not more prevalent 453–5
models of forecasters predictions 451
policy capturing/bootstraping model 451–2
sales forecaster example 451
tendency to rely on own judgments 454
trust in experts/advisors 454
venture capitalists example 452
see also comparison of decision-aiding techniques
stochastic dominance 199–203

strategies, factors affecting 23–4
subjective probability 98–9, 389
and uncertainty 99
‘take the last’ heuristic 18
‘thinking outside the box’ 57
threats, people’s reaction 377–8
bolstering 377–8, 381
buck passing 377–8
conflict theory (Janis and Mann) 377
defensive avoidance 377, 378
procrastination 377
three jug problem 361–2
tornado diagram 302
transitivity 19
Tree Age Pro software package 166

uncertainty in decision making 2, 95, 99, 117–52
about uncertainty 117
decision tables 118–19
expected monetary value (EMV) criterion 119–24
maximum criterion 118–19
minimax criterion 119
see also multi-attribute utilities; probability;
utility/utility function
uncertainty management 297–307
about uncertainty and risk management 297–8,
305
brainstorming 303–5
exploratory tree 298–9
identifying/evaluating promising areas 300–3
perfect control, calculating the effect of 300–2
repeating for best option 302–3
probability distributions 298
tornado diagram 302
Two Valleys Company redeployment example 298–305
value trees 298
utility axioms
complete ordering 134
compound lottery 136–7
continuity 134
substitution 135
transitivity 134
unequal probability 135–6
utility/utility function 124–52
certainty-equivalence approach 137
with decision trees 166–8
hotel choice example 124–30
interpretation considerations 130–1
lottery ticket example 126–7
multi-attribute utility 143–52
utility/utility... (cont’d)
 for non-monetary attributes 132–4
 chemical plant design example 133–4
 and NPV with simulation 211–12
 practical use 140–3
 Allais’s paradox 141–2
 measuring problems 141
 single attribute utility 124–30
 utility elicitation 137–40
 elicitation session example 137–8
 gamble example 139–40
 see also multi-attribute utilities

value functions 42–4, 140
 bisection approach 43–4

value trees
 construction 36–9
 judgment of accuracy 38–9
 absence of redundancy 39
 completeness 38
 decomposability 38
 minimum size 39
 operationality 38
 with uncertainty 298

value-focused thinking 56–7

values and utilities, aggregating
 316–19

weighted averaging of judgments
 312–13