CONTENTS

PREFACE xv

ACKNOWLEDGMENTS xxix

ABOUT THE BOOK xxxi

ABOUT THE AUTHOR xxxiii

INTRODUCTION 1

Some Principal Definitions, 1

PART I CLIMATIC FACTORS

1 Pressure 5

1.1 Definition of Pressure, 5
1.2 Atmospheric Pressure, 6
1.3 Physiological Effects of Decreased Air Pressure on Human Organism, 9
1.4 Physiological Effects of Altitude on Animals, 9
1.5 Effects of Altitude on Plants, 9
1.6 Variation of Pressure with Depth, 10
1.7 Physiological Effects of Increased Pressure on Human Organism, 11
1.8 Physiological Effects of Pressure on Diving Animals, 12

References, 13
2 Measurement of Pressure

2.1 Manometers, 14
2.2 Barometers, 17
2.3 Digital Barometric Pressure Sensor, 19
2.4 Vibrating Wire Sensor, 20
2.5 Capacitive Pressure Sensor, 20
2.6 Measurement of Pressure at Depth, 22

Questions and Problems, 23
Further Reading, 23
Electronic References, 23

Practical Exercise 1. Analysis of Observed Data: Theory of Errors

1 Approximation of Data, 25
1.1 Rules for Dealing with Significant Numbers, 25
1.2 The Precision of the Measurement During Multiplication or Division, 26
1.3 The Precision of the Measurement During Addition or Subtraction, 26
1.4 The Precision of the Measurement During Raising to a Power or Extracting a Root, 26

2 Theory of Errors, 26
2.1 Types of Errors, 26
2.2 Errors in Direct Measurements, 27
2.3 Errors in Indirect Measurements, 29

References, 33
Electronic Reference, 33

3 Wind

3.1 Definition of Wind, 34
3.2 Forces That Create Wind, 34
3.3 Parameters of Wind, 35
3.4 Effect of Wind on Living Organisms, 37

Reference, 37

4 Measurement of Wind Parameters

4.1 Cup Anemometer, 38
4.2 Windmill Anemometer, 40
4.3 Hot-Wire Anemometer, 41
4.4 Sonic Anemometer, 42
4.5 Remote Wind Sensing, 43
4.5.1 Radiosonde, 44
4.5.2 Radar, 44
4.5.3 Sodar, 45
4.5.4 Lidar, 45

References, 33
Electronic Reference, 33
CONTENTS

4.5.5 Doppler Effect, 46
4.5.6 Satellite and Rocket Remote Sensing, 47
4.6 Measurement of Wind Direction, 47
4.7 Cyclone Assessment, 49
Reference, 49

Practical Exercise 2. Modeling the Variation in Wind Speed 50

1 Modeling Variation in Wind Speed Near the Ground, 50
2 Modeling the Variation in Wind Speed Above a Plant Canopy, 52
Questions and Problems, 55
Reference, 56
Further Reading, 56
Electronic References, 56

5 Temperature 57

5.1 Definition of Temperature, 57
5.2 Temperature Scales, 57
5.3 Atmospheric Temperature, 59
5.4 Soil Temperature, 59
5.5 Temperature of Water Reservoirs, 60
5.6 Heat Flux, 60
5.7 Effect of Temperature on Living Organisms, 61
 5.7.1 Heat Production, 61
 5.7.2 Heat Transfer, 63

6 Measurement of Temperature 67

6.1 Liquid-in-Glass Thermometers, 67
6.2 Bimetallic Thermometer, 69
6.3 Resistance Thermometer, 70
6.4 Thermocouples, 71
6.5 Optical Pyrometry, 72
6.6 Infrared Thermometers, 73
6.7 Heat Flux Measurement, 74
6.8 Method of Scintillometry, 76
References, 77

Practical Exercise 3. Modeling Vertical Changes in Air Temperature 78

1 Measurement of Temperature Above Uniform Surface, 78
2 Measurement of Sensible Heat Flux, 82
Questions and Problems, 83
Reference, 83
Further Reading, 83
Electronic References, 84
x CONTENTS

7 Humidity

7.1 Definition of Humidity, 85
7.2 Parameters of Humidity, 85
7.3 Effect of Humidity on Living Organisms, 86
 7.3.1 Effect of Humidity on Human Organism, 86
 7.3.2 Effect of Humidity on Microorganisms, 86
 7.3.3 Effect of Humidity on Animals, 86
 7.3.4 Effect of Humidity on Plants, 87

8 Measurement of Air Humidity

8.1 Hygrometers, 88
8.2 Assmann Psychrometer, 88
8.3 Hair Hygrometer, 91
8.4 Capacitive Hygrometer, 92
8.5 Condensation Hygrometer, 93
8.6 Electrolytic Hygrometer, 95
8.7 Radiation Absorption Hygrometer (Gas Analyzer), 95
8.8 An Open-Path System for Measuring Humidity, 96
8.9 Remote Sensing Humidity, 97

Practical Exercise 4. Measuring Parameters of Humidity

1 Objectives, 99
2 Materials Supplied, 99
3 Principle of Operation, 99
4 Experimental Procedure, 100
Questions and Problems, 101
Reference, 101
Further Reading, 101
Electronic Reference, 102

9 Precipitation

9.1 Definitions, 103
9.2 Mechanisms of Precipitation, 103
9.3 Parameters of Precipitation, 104
9.4 Acid Rain, 104
9.5 Interception, 105
9.6 General Characteristics of Isotopes, 105
9.7 Stable Isotopes of Water, 105
9.8 Isotopic Fractionation, 106
9.9 Stable Isotopes in Precipitation Processes, 106
9.10 Application of Stable Isotopes, 107
9.11 Effect of Precipitation on Living Organisms, 107
9.12 Snow, 108
 9.12.1 Parameters of Snow, 108
 9.12.2 Effect of Snow on Living Organisms, 109
9.13 Fog, 109
 9.13.1 Parameters of Fog, 110
 9.13.2 Effect of Fog on Living Organisms, 110
References, 111

10 Measurement of Precipitation 112
 10.1 Measurement of Precipitation Parameters, 112
 10.1.1 Standard Rain Gauge, 112
 10.1.2 Tipping Bucket Rain Gauge, 113
 10.1.3 Siphon Rain Gauge, 114
 10.1.4 Weighing Bucket Gauge, 116
 10.1.5 Optical Rain Gauge, 117
 10.1.6 Laser Precipitation Monitor, 117
 10.1.7 Acoustic Rain Gauge, 118
 10.2 Measurement of Acid Rain Pollution, 119
 10.2.1 pH-metry, 120
 10.2.2 Conductivity, 120
 10.2.3 Ion-Exchange Chromatography, 120
 10.3 Isotopes in Precipitation, 121
 10.3.1 Isotope Ratio Mass Spectrometry, 121
 10.3.2 Diode Laser: Principle of Operation, 122
 10.3.3 Tunable Diode Laser Absorption Spectroscopy, 123
 10.3.4 Modulated Techniques, 124
 10.3.5 Cavity Ring-Down Spectroscopy, 124
 10.4 Remote Sensing of Precipitation, 126
 10.4.1 Types of Remote Sensing Techniques, 126
 10.4.2 Radars, 126
 10.4.3 Satellites, 127
 10.4.4 Estimation and Analysis of Precipitation Parameters, 128
 10.5 Snow Measurement, 129
 10.5.1 Measurement of Snowfall, 129
 10.5.2 Snow Gauge, 129
 10.5.3 Ultrasonic Snow Depth Sensor, 129
 10.5.4 Laser Snow Depth Sensor, 130
 10.5.5 Remote Sensing of Snow Cover, 130
 10.6 Fog-Water Measurement, 132
References, 132

Practical Exercise 5. Velocity of a Falling Raindrop 134
 1 Balance of Forces, 134
 2 The Size and Shape of Raindrops, 135
CONTENTS

3 The Drag Coefficient, 135
4 The Reynolds Number, 135
Questions and Problems, 138
References, 138
Further Reading, 138
Electronic References, 139

11 Solar Radiation 141
11.1 SI Radiometry and Photometry Units, 141
11.2 The Photosynthetic Photon Flux Density, 142
11.3 Parameters of Sun, 142
11.4 Intensity of the Sun, 142
11.5 Periodicity of Solar Activity, 144
11.6 Spectral Composition of Solar Radiation, 144
11.7 Atmospheric Radiation, 144
11.8 Terrestrial Radiation, 145
11.9 Effect of Solar Ultraviolet Radiation on Living Organisms, 145
11.10 Effect of Solar Visible Radiation on Living Organisms, 146
References, 147

12 Measurement of Solar Radiation 148
12.1 Classification of Radiometers, 148
12.2 Measurement of Direct Solar Radiation—Pyrheliometer, 149
12.3 Measurement of Global Radiation—Pyranometer, 149
12.4 Measurement of Diffuse Radiation—Pyranometer with a
 Sun-Shading Ring, 150
12.5 Measurement of Long-Wave Radiation—Pyrgeometer, 150
12.6 Measurement of Albedo—Albedometer, 151
12.7 Measurement of Total Radiation—a 4-Component Net
 Radiometer, 152
12.8 Photometer, 153
12.9 Photon Meter, 154
12.10 Conversion of Light Environment Units, 155

Practical Exercise 6. Parameters of Optical Radiation 156
1 Parameters of Electromagnetic Radiation, 156
2 The Inverse-Square Law, 157
3 The Cosine Law, 158
4 The Wien’s Displacement Law, 159
5 The Stefan–Boltzmann Law, 160
6 The Photosynthetic Photon Flux Density, 160
7 The Laboratory Exercise “The Inverse-Square Law”, 160
Questions and Problems, 162
Further Reading, 162
Electronic Reference, 163
13 Eddy Covariance 164

13.1 Turbulence, 164
13.2 Boundary Layer, 164
13.3 Eddy Covariance, 165
13.4 Turbulent Velocity Fluctuations, 166
13.5 Vertical Momentum Flux, 167
13.6 Sensible Heat Flux, 167
13.7 Latent Heat Flux, 167
13.8 Carbon Dioxide Flux, 168

References, 168

14 Measurement of Eddy Covariance 169

14.1 Meteorological Towers, 169
14.2 Gas Analyzers, 170
14.3 Quantum Cascade Laser Spectroscopy for Atmospheric Gases: Eddy Covariance Flux Measurements, 171
14.4 Stable Isotopes of Carbon Dioxide, 172
14.5 Quantum Cascade Laser Absorption Spectrometry, 173
14.6 Eddy Covariance Measurement of Carbon Dioxide Isotopologues, 173
14.7 Measurement of Eddy Accumulation, 174
14.8 Interaction of Climatic Factors, 174
14.9 Automatic Weather Stations, 175

Reference, 176

Practical Exercise 7. Eddy Covariance Measurement 177

Questions and Problems, 178
Further Reading, 179
Electronic Reference, 180

PART II ATMOSPHERIC FACTORS

15 Atmosphere 183

15.1 Composition of the Atmosphere, 183
15.2 Air Pollution, 183
15.3 Air Quality, 184

Reference, 184

16 Measurement of Ambient Air Quality 185

16.1 Measurement of NO$_2$, 185
16.1.1 Chemiluminescence, 185
16.1.2 The Automatic Cavity Attenuated Phase Shift NO$_2$ Analyzer, 187
16.1.3 Micro-Gas Analysis System for Measurement of NO$_2$, 189
CONTENTS

16.1.4 Measurement of NO$_2$ in a Liquid Film/Droplet System, 189
16.1.5 Electrochemical Sensor, 189
16.1.6 Passive Diffusive Samplers, 190
16.1.7 Thick Film Sensors, 192
16.1.8 Open-Path Differential Optical Absorption Spectrometer, 193
16.2 Effect of Nitrogen Dioxide on Human Health, 195
16.3 Measurement of SO$_2$, 195
16.3.1 Fluorescence Spectroscopy, 195
16.3.2 Micro-Gas Analyzers for Environmental Monitoring, 196
16.4 Effect of Sulfur Dioxide on Human Health, 198
16.5 Measurement of CO, 198
16.5.1 Infrared Photometry, 199
16.5.2 Open-Path Fourier Spectrometry, 200
16.5.3 Effect of Carbon Monoxide on Human Health, 202
16.6 Particulate Matter Sampling, 202
16.7 Gravimetric Methods, 203
16.7.1 High-Volume Samplers, 203
16.7.2 Impaction Inlet, 203
16.7.3 Cyclonic Inlet, 203
16.7.4 Low-Volume Samplers, 204
16.7.5 Dichotomous Sampler, 204
16.8 Continuous Methods, 206
16.8.1 Beta Attenuation Monitor, 206
16.8.2 Tapered Element Oscillating Microbalance, 207
16.9 Effect of Particulate Matter on Human Health, 208
16.10 Nanoparticles, 209
16.11 Effect of Nanoparticles on Human Health, 209
16.12 Bioaerosols, 209
16.13 Bioaerosol Sampling and Identification, 210
16.13.1 Bioaerosol Sampler Spore-Trap, 210
16.13.2 Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry, 211
16.14 Measurement of Atmospheric Ozone, 212
16.14.1 Radiosondes, 212
16.14.2 Dobson and Brewer Spectrophotometry, 213
16.15 Measurement of Ground-Level Ozone, 214
16.16 Effect of Ozone on Human Health, 214
16.17 Measurement of Lead, 214
16.17.1 Atomic Spectrometry of Lead, 214
16.17.2 Graphite Furnace Atomic Absorption Spectroscopy, 215
16.18 Effect of Lead on Human Health, 216
References, 216
Practical Exercise 8. Fundamentals of Spectroscopy 218

1 Beer–Lambert–Bouger Law, 218
2 Photometry of Ozone in Gas Phase, 219
3 Fourier Transform Spectrometry, 220
Questions and Problems, 221
Further Reading, 221
Electronic References, 221

17 Indoor Air Quality 223

17.1 Indoor Air, 223
17.2 Volatile Organic Compounds, 224
17.3 Sources of Volatile Organic Compounds, 224
17.4 Effect of External Factors on VOCs Emission in Indoor Air, 225
17.5 Health Effects and Toxicity of Volatile Organic Compounds, 226
 17.5.1 Sick Building Syndrome, 226
 17.5.2 Estimation of Health Effects of VOCs through the Questionnaires, 226
 17.5.3 Principles of Phytoremediation, 227
References, 227

18 Methods of Analysis of Volatile Organic Compounds 229

18.1 Principal Stages of Volatile Organic Compounds Analysis, 229
18.2 Gas Chromatography, 230
18.3 Detection Systems, 231
 18.3.1 Flame Ionization Detectors, 231
 18.3.2 Thermal Conductivity Detectors, 232
18.4 Mass Spectrometry, 233
 18.4.1 Sector Field Mass Analyzer, 233
 18.4.2 Quadrupole Mass Analyzer, 234
18.5 Combination of Gas Chromatography and Mass Spectrometry, 235
18.6 Photoacoustic Spectroscopy, 236
18.7 Proton Transfer Reaction Mass Spectrometry, 238
18.8 Fourier Transform Infrared Spectroscopy of Volatile Organic Compounds, 239
Questions and Problems, 240
References, 240
Further Reading, 242
Electronic References, 242
PART III HYDROGRAPHIC FACTORS

19 Water Quality

19.1 Water Resources, 247
19.2 Properties of Water, 247
19.3 Classification of Water, 249
19.4 Quality of Water, 249
19.5 Water Quality Parameters, 249
 19.5.1 Drinking Water Quality Parameters, 250
 19.5.2 Groundwater Quality Parameters, 250
 19.5.3 Surface Water Quality Parameters, 251
19.6 Effect of Water Quality on Human Health, 251
References, 252

20 Measurement of Water Quality Parameters

20.1 In Situ Measurement of Water Quality Parameters, 253
 20.1.1 pH value, 253
 20.1.2 Measurement of pH of Water, 253
 20.1.3 Concentration of Dissolved Oxygen, 254
 20.1.4 Measurement of Dissolved Oxygen, 254
 20.1.5 Oxidation–Reduction Potential, 255
 20.1.6 Measurement of Oxidation–Reduction Potential, 256
 20.1.7 Turbidity, 256
 20.1.8 Measurement of Turbidity, 256
 20.1.9 Electrical Conductivity of Water, 261
 20.1.10 Measurement of Electrical Conductivity, 261
 20.1.11 Measuring Stream Flow, 262
20.2 Laboratory Measurement of Water Quality Parameters, 262
 20.2.1 Purge-and-Trap Gas Chromatography/Mass Spectrometry, 263
 20.2.2 Membrane Introduction Mass Spectrometry, 264
References, 266

Practical Exercise 9. Water Quality Parameters

1 pH-Value, 267
2 Oxidation–Reduction Potential, Nernst Equation, 267
3 Conductivity, 268
4 Water Quality Index, 269
Questions and Problems, 269
Further Reading, 270
Electronic References, 270
PART IV EDAPHIC FACTORS

21 Soil Quality 275
 21.1 Soil as a Natural Body, 275
 21.2 Soil Structure and Composition, 276
 21.3 Soil Quality, 276
 21.4 Soil Quality Indicators, 277
 References, 277

22 Physical Indicators 278
 22.1 Aggregate Stability, 278
 22.2 Measurement of Aggregate Stability, 279
 22.2.1 Ultrasound Dispersion, 279
 22.2.2 Laser Granulometer, 279
 22.3 Available Water Capacity, 280
 22.4 Measurement of Available Water Capacity, 280
 22.5 Bulk Density, 282
 22.6 Measurement of Bulk Density, 284
 22.6.1 Bulk Density Test, 284
 22.6.2 Clod Method, 284
 22.6.3 Three-Dimensional Laser Scanning, 285
 22.7 Infiltration, 285
 22.8 Measurement of Infiltration, 286
 22.8.1 Infiltration Test, 286
 22.8.2 Single-ring and Double-ring Infiltrometers, 286
 22.8.3 Tension Infiltrometer, 287
 22.8.4 The Automatic Infiltration Meter, 289
 References, 289

23 Chemical Indicators 291
 23.1 pH of Soil, 291
 23.2 Electrical Conductivity of Soil, 292
 23.3 Optical Emission Spectroscopy with Inductively Coupled Plasma, 292
 23.4 Mass Spectrometry with Inductively Coupled Plasma, 293
 23.5 Laser-Induced Breakdown Spectroscopy, 294
 References, 295

24 Biological Indicators 297
 24.1 Earthworms as Soil Bioindicators, 297
 24.2 Analysis of Earthworms, 298
 24.3 A Biota-to-Soil Accumulation Factor, 299
 24.4 Soil Respiration, 299
CONTENTS

24.5 Measurement of Soil Respiration, 300
 24.5.1 The Draeger Tubes, 300
 24.5.2 Soil CO₂ Flux Chambers, 301
 24.5.3 The Automated Soil CO₂ Flux System, 301

References, 303

Practical Exercise 10. Determination of the Sedimentation Velocity and the Density of Solid Particles 305

1 Derivation of the Sedimentation Equation, 305
2 Determination of the Sedimentation Velocity of Solid Particles, 306
3 Determination of the Density of Solid Particles, 307

Questions and Problems, 308
Further Reading, 308
Electronic References, 309

PART V VEGETATION FACTORS

25 Spectroscopic Analysis of Plants and Vegetation 315

25.1 Spectroscopic Approach, 315
 25.1.1 Optical Radiation, 315
 25.1.2 The Interaction of Light with Plant Objects, 316
 25.1.3 Reflectance, 316
25.2 Reflectance Spectroscopy, 317
25.3 Methods of Reflectance Spectroscopy, 317
 25.3.1 Laboratory Methods, 318
 25.3.2 Portable Reflectance Instrumentation, 319
 25.3.3 Near-Field Reflectance Instrumentation, 319
 25.3.4 Vegetation Indices, 320
 25.3.5 Remote Sensing of Vegetation Reflectance, 321
 25.3.6 Multispectral Scanning, 321
 25.3.7 Spectral Bands MSS and TM, 322
 25.3.8 Spectral Vegetation Indices that are used in the Remote Sensing, 323
25.4 Effect of External Factors on Single Leaf and Canopy Reflectance, 324
25.5 Fluorescence Spectroscopy, 325
 25.5.1 Photosynthesis and Chlorophyll Fluorescence, 325
 25.5.2 Fluorescence Properties of a Green Leaf, 326
 25.5.3 Fluorescent Properties of Vegetation, 326
25.6 Laboratory Methods of Fluorescence Spectroscopy, 327
 25.6.1 Spectrofluorometry, 327
 25.6.2 Fluorescence Induction Kinetics, 328
CONTENTS

25.6.3 Optical Multichannel Analysis, 330
25.6.4 Pulse Amplitude Modulation Fluorometry, 330
25.6.5 Fluorescence Indices, 332
25.7 Remote Sensing of Vegetation Fluorescence, 333
25.7.1 Laser-Induced Fluorescence Spectroscopy for In Vivo Remote Sensing of Vegetation, 333
25.7.2 Laser Spectrofluorometer, 333
25.8 The Effect of Various Factors on the Chlorophyll Fluorescence, 335
References, 335

Practical Exercise 11. Determination of Perpendicular Vegetation Index 338

Questions and Problems, 340
Further Reading, 341
Electronic References, 341

PART VI PHYSICAL TYPES OF POLLUTION

26 Mechanical Vibration 345

26.1 Parameters of Vibration, 345
26.2 Vibration Level, 346
26.3 Sources of Vibration, 346
26.4 Effect of Vibration on Human Health, 346

27 Measurement of Vibration 348

27.1 Resistive Transducers, 348
27.2 Electromagnetic Transducers, 349
27.3 Capacitive Transducers, 349
27.4 Piezoelectric Transducers, 349
27.5 Laser Doppler Vibrometer, 350

28 Noise 351

28.1 Main Definitions of Noise, 351
28.2 Sources of Noise, 351
28.3 Parameters of Noise, 352
28.4 Equivalent Sound Level, 352
28.5 Integrating Sound Level, 353
28.6 Spectral Density of Noise, 353
28.7 Effect of Noise on Human Health, 354
28.8 Mechanisms of Noise Action, 354
28.9 How to Protect Yourself from Noise, 355
28.10 Effect of Noise Pollution on Ecosystem, 355
CONTENTS

29 Measurement of Noise 356
 29.1 Sound Level Meters, 356
 29.2 Types of Microphones, 357
 29.3 Noise Frequency Analyzers, 357
 29.4 Sound Intensity Measurement, 357

Practical Exercise 12. Sound Insulation and Reverberation Time 358
 1 Sound Insulation, 358
 2 Reverberation Time, 359

30 Thermal Pollution 362
 30.1 Sources of Thermal Pollution, 362
 30.2 The Effect of Thermal Pollution on Living Organisms, 362

31 Measurement of Thermal Pollution 364
 31.1 Thermal Discharge Index, 364
 31.2 Indirect Measurement of Thermal Pollution, 364

32 Light Pollution 365
 32.1 The Sources of Light Pollution, 365
 32.2 Types of Light Pollution, 365
 32.2.1 Light Trespass, 366
 32.2.2 Over-Illumination, 366
 32.2.3 Glare, 366
 32.2.4 Clutter, 366
 32.2.5 Sky Glow, 366
 32.3 Effects of Light Pollution on Human Health, 366
 32.4 Effects of Light Pollution on Wildlife, 367
 References, 367

33 Measurement of Light Pollution 368
 33.1 Digital Photography, 368
 33.2 Portable Spectrophotometers, 369
 33.3 Sky Quality Meter, 369
 33.4 The Bortle Scale, 370
 References, 370

34 Electromagnetic Pollution 371
 34.1 Principal Terminology and Units, 371
 34.2 Electromagnetic Pollution, 372
 34.3 Effect of Electromagnetic Pollution on Human Health, 373
 34.3.1 Extremely Low Fields, 373
CONTENTS

PART VII BIOTIC FACTORS

38 Bioindication 401

38.1 Lichens as Bioindicators, 401
38.2 Algae as Bioindicators, 402
38.3 Classification of Water Reservoirs, 402
38.4 Water Quality Indices, 402
38.5 Invertebrates as Bioindicators, 404

References, 406
Electronic References, 406

39 Biomonitoring 407

39.1 Test-Organisms and Test-Functions, 407
39.2 Bacteria as Test-Objects, 408
39.3 Protozoa as Test-Objects, 408
39.4 Algae as Test-Objects, 408
 39.4.1 Photomovement Parameters of Algae as Test-Functions, 408
 39.4.2 Gravitaxis Parameters of Algae as Test-Functions, 409
39.5 Invertebrates as Test-Objects, 409
 39.5.1 Daphnia as Test-Object, 409
 39.5.2 Daphnia Toximeter, 410
39.6 Fungi as Test-Objects, 410
39.7 Fish as Test-Objects, 410
39.8 Remote Water-Quality Monitoring, 411

References, 411

Practical Exercise 14. Photomovement Parameters as Test-Functions During Biomonitoring 412

1 Simultaneous Use of Several Test-Functions During Biomonitoring, 412
2 Vector Method of Biomonitoring, 413

Questions and Problems, 414

References, 415
Further Reading, 415
Electronic References, 415

APPENDIX 417

INDEX 421