INDEX

Abstraction-based sensor programming, 46
ACE algorithm, 173
 pseudocode for, 173
Active sensor network (ASN) project, 228
Ad hoc networks, 51, 63, 267
 epidemic models, 63
 paradigm of, 267
 techniques, 438
Ad hoc nodes, 130
Ad hoc positioning system (APS), 325, 326–328, 523, 526
Ad hoc routing protocols, 66
Adaptive threshold-sensitive energy-efficient sensor network protocol (APTEEN), 144
Advertisement messages (ADV), 55
Aggregation-and-forwarding (AFN), 236
Algorithm design, 90
Algorithm for cluster establishment (ACE), 171
Algorithm for robust routing in volatile environments (ARRIVE), 155–156
Algorithmic models, 96
Alternating-current power adaptor, 22
Ambient conditions, 225
 humidity, 225
 light intensity, 225
 pressure, 225
 temperature, 225
Analog to digital converter (ADC), 356
Angle estimation method, 344
Angle of arrival (AOA) estimation, 348–349
Angle of arrival (AOA) measurements, 359
Angle/direction of arrival (AoA/DoA), 314
APIT algorithm, 323, 526
Arbitrary nodes, 82
Area coverage, 232
ARRIVE algorithm, 155
ARRIVE protocol, 155
 flow chart, 155
Art-gallery model, 230
Attribute-based routing protocols, 133–135
Autonomous underwater vehicles (AUV), 268
Base station, 492
 placement, 238–241
 position, 242
 protection, 256
 relocation, 254
Beacon identification, 355
Beacon nodes, 334
Beacon vector routing (BVR), 214
BFS, see Breadth first search
Binary interference models, 89
Blom’s key pre-distribution method, 491
Bounded independence graph (BIG), 80
 model, 80
Braided multipaths, 149
 design, 150
Breadth first search (BFS) 164, 166, 204
 BFS algorithm, 171
Broadcast-based dissemination, 54
Broadcast transmission protocol, 55
Broadcasting technique, 187
BVR algorithm, 215
 overview of, 215
BVR protocol, 214
Carrier sensing multiple access (CSMA), 506
Cartesian coordinate system, 213
Cascaded sensors movement, 252
Center for embedded networked sensing (CENS), 44
Centralized analytical model, 272
Chessboard clustering protocol, 33
Cipher block chaining (CBC), 499
Cipher in counter mode (CTR), 496
Civilized graphs, 97
Cluster-based distributed localization scheme, 359
Cluster-based graph network, 187–188
Clustered network, 250
SMART, 250
Clustering techniques, 163
Communication range method, 315 advantage of, 315
Compromised node, 514
Computational geometry, 78 based algorithm, 240
Connection-tree (C-tree), 152
Constant transmission power, 85
Constrained shortest-path algorithm, 135
Controlled sink mobility, 281–283
Correlation model, 107
Cricket compass project, 348
Cricket location support system, 334
Cross-link detection protocol (CLDP), 208
Data aggregation, 65
Gossip algorithms, 65
Data collectors, 268
AUVs, 268
Robots, 268
Data dissemination process, 54–56
SPIN, 54
Data dissemination protocol, see Scalable energy-efficient asynchronous dissemination
Data fidelity, 237
Data forwarding phase, 498
Data MULEs, 293
Data packets, 278
Data propagation protocols, 476
Data redundancy, 28
Delay-constrained traffic, 255
Deluge protocol, 61–63
Deluge protocol, 62
MAINTAIN states, 62
RX states, 62
TX states, 62
Deluge state machine, 61
Deployment objectives, 231
Deployment schemes, 228
Depth first search (DFS), 164, 166
Design optimization strategies, 227
Differential-equation-based approach, 70
Differential-rate-equation-based modeling methods, 71
Dijkstra’s algorithm, 233
Dijkstra’s least-cost path algorithm, 252
Directed diffusion algorithm, 134 pseudocode, 134
Directed position estimation (DPE), 329–331
Direct transmission phase, 427
Directed position estimation (DPE), 523
Distance/Angle estimation, 523
Distributed reputation based beacon trust system (DRBTS), 528
Disjoint multipaths, 149
Disk graph, 78
Disk graph model (QUDG), 79
Distance-based coordinates, 210
Distance estimates, 349
Distance/angle estimation, 310, 311
Distances estimation methods, 343–344 mechanisms for, 343
Distributed algorithms, 91–92, 98, 271
Distributed dominating set-based algorithms, 175–176
Distributed sensor networks with collective computation (DSN-CC), 27
Divide-and-conquer method, 178
DM model, 89
Dominating set problem (DS), 90
DPE algorithm, 331 phases, 331
Drift error, 504
DSN-CC project, 28, 167, 176
DSN-CC system, 28
Dust-sized smart sensors, 342
DV-distance, 326
DV-Hop, 326
DV-Hop algorithm, 326
DV-Hop solution, 359
Dynamic packet state (DPS), 151
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAD algorithm, 476</td>
<td>537</td>
</tr>
<tr>
<td>Echno protocol, 529</td>
<td>537</td>
</tr>
<tr>
<td>E-health systems, 268</td>
<td>537</td>
</tr>
<tr>
<td>telemedicine equipment, 268</td>
<td></td>
</tr>
<tr>
<td>wearable sensors, 268</td>
<td></td>
</tr>
<tr>
<td>Efficient aggregation, 65</td>
<td>537</td>
</tr>
<tr>
<td>geographic Gossip, 65</td>
<td></td>
</tr>
<tr>
<td>smart Gossip, 65–66</td>
<td></td>
</tr>
<tr>
<td>Embedded networked sensing, 44–45</td>
<td>537</td>
</tr>
<tr>
<td>End-to-end transmission rate drops, 30</td>
<td></td>
</tr>
<tr>
<td>performance of, 30</td>
<td></td>
</tr>
<tr>
<td>Energy-aware data-centric routing (EAD),</td>
<td>537</td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Energy balanced data propagation problem,</td>
<td>537</td>
</tr>
<tr>
<td>453</td>
<td></td>
</tr>
<tr>
<td>Energy-constrained nodes, 32</td>
<td>537</td>
</tr>
<tr>
<td>nodes E1, 32</td>
<td></td>
</tr>
<tr>
<td>nodes E2, 32</td>
<td></td>
</tr>
<tr>
<td>Energy dissipation, 452, 463</td>
<td>537</td>
</tr>
<tr>
<td>Energy-efficient algorithms, 423</td>
<td></td>
</tr>
<tr>
<td>Energy-efficient communication protocols,</td>
<td>537</td>
</tr>
<tr>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Energy-efficient protocols, 425</td>
<td></td>
</tr>
<tr>
<td>energy-balanced protocol (EBP), 425</td>
<td></td>
</tr>
<tr>
<td>local target protocol (LTP), 425</td>
<td></td>
</tr>
<tr>
<td>probabilistic forwarding protocol (PFR),</td>
<td></td>
</tr>
<tr>
<td>425</td>
<td></td>
</tr>
<tr>
<td>variable transmission range protocol (VTRP), 425</td>
<td></td>
</tr>
<tr>
<td>Energy-efficient multipath routing, 149</td>
<td></td>
</tr>
<tr>
<td>mechanisms, 149</td>
<td></td>
</tr>
<tr>
<td>Energy-efficient routing protocol, 269</td>
<td></td>
</tr>
<tr>
<td>use, 269</td>
<td></td>
</tr>
<tr>
<td>Epidemic algorithms, 68</td>
<td>537</td>
</tr>
<tr>
<td>Epidemic algorithms classification, 58</td>
<td></td>
</tr>
<tr>
<td>Epidemic broadcast-based dissemination,</td>
<td>54</td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Epidemic models, 68</td>
<td></td>
</tr>
<tr>
<td>Epidemic parameter, 53</td>
<td></td>
</tr>
<tr>
<td>Epidemic routing protocol, 62, 66–67</td>
<td></td>
</tr>
<tr>
<td>Epidemic theory, 52–54</td>
<td></td>
</tr>
<tr>
<td>definition, 52</td>
<td></td>
</tr>
<tr>
<td>overview of, 52–54</td>
<td></td>
</tr>
<tr>
<td>Epidemic theory, 52, 53</td>
<td></td>
</tr>
<tr>
<td>epidemic parameter, 53</td>
<td></td>
</tr>
<tr>
<td>overview of, 52</td>
<td></td>
</tr>
<tr>
<td>Epidemiological studies, 53</td>
<td></td>
</tr>
<tr>
<td>definition, 53</td>
<td></td>
</tr>
<tr>
<td>ERUP protocol, 273</td>
<td></td>
</tr>
<tr>
<td>Estimating angles method, 344</td>
<td></td>
</tr>
<tr>
<td>mechanisms for, 344</td>
<td></td>
</tr>
<tr>
<td>Euclidean graph, 78</td>
<td></td>
</tr>
<tr>
<td>Euclidean method, 327</td>
<td></td>
</tr>
<tr>
<td>Euclidean plane, 82</td>
<td></td>
</tr>
<tr>
<td>Eulerian broadcasting procedure, see</td>
<td></td>
</tr>
<tr>
<td>Broadcasting technique</td>
<td></td>
</tr>
<tr>
<td>Event-driven heterogeneous WSNs, 43</td>
<td></td>
</tr>
<tr>
<td>Event-to-sink reliability notion, 122</td>
<td></td>
</tr>
<tr>
<td>Exponential autocorrelation function, 113</td>
<td></td>
</tr>
<tr>
<td>Exposure-based coverage assessment, 232</td>
<td></td>
</tr>
<tr>
<td>Fault-tolerant data propagation protocols,</td>
<td>537</td>
</tr>
<tr>
<td>461 447</td>
<td></td>
</tr>
<tr>
<td>Fault tolerance, 131</td>
<td></td>
</tr>
<tr>
<td>Field sources, 118</td>
<td></td>
</tr>
<tr>
<td>spatiotemporal characteristics of, 118</td>
<td></td>
</tr>
<tr>
<td>Firecracker dissemination components, 58</td>
<td></td>
</tr>
<tr>
<td>broadcast protocol, 58</td>
<td></td>
</tr>
<tr>
<td>mechanism, 57–59</td>
<td></td>
</tr>
<tr>
<td>routing protocol, 58</td>
<td></td>
</tr>
<tr>
<td>seed selection, 58</td>
<td></td>
</tr>
<tr>
<td>Firecracker protocol, 57–59</td>
<td></td>
</tr>
<tr>
<td>Flat homogeneous WSN, 36</td>
<td></td>
</tr>
<tr>
<td>Flat network topology, 241</td>
<td></td>
</tr>
<tr>
<td>Flooding time synchronization protocol (FTSP)</td>
<td></td>
</tr>
<tr>
<td>Gabriel graph construction, 205</td>
<td></td>
</tr>
<tr>
<td>Galileo device, 98</td>
<td>537</td>
</tr>
<tr>
<td>Galileo device, see GPS</td>
<td></td>
</tr>
<tr>
<td>Gallager, Humblet, and Spira (GHS)</td>
<td></td>
</tr>
<tr>
<td>algorithm, 177</td>
<td></td>
</tr>
<tr>
<td>Gaussian distribution, 350</td>
<td></td>
</tr>
<tr>
<td>Gaussian random variables (JGRVs), 109</td>
<td></td>
</tr>
<tr>
<td>GDSTR, 208</td>
<td></td>
</tr>
<tr>
<td>General graph (GG), 79</td>
<td></td>
</tr>
<tr>
<td>General metric spaces, 81</td>
<td></td>
</tr>
<tr>
<td>General weighted graph (GWG), 89</td>
<td></td>
</tr>
<tr>
<td>Generalized network of miniature</td>
<td></td>
</tr>
<tr>
<td>environmental sensors (GNOMES), 44</td>
<td></td>
</tr>
<tr>
<td>Geographic routing, 138, 140</td>
<td></td>
</tr>
<tr>
<td>energy-efficient forwarding strategies, 140</td>
<td></td>
</tr>
<tr>
<td>Geographic routing algorithm (GRA), 139,</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Geographical positioning system (GPS), 141</td>
<td></td>
</tr>
<tr>
<td>325, 335, 341</td>
<td></td>
</tr>
<tr>
<td>device, 345</td>
<td></td>
</tr>
<tr>
<td>GPS receiver, 334, 341, 346</td>
<td></td>
</tr>
</tbody>
</table>
Geosensor network, 68
 definition, 68
 epidemic approach, 68
 flooding approach, 68
 location-constrained approach, 68
Global algorithms, 91, 92, 93
Global positioning system (GPS), 22, 98, 196, 334
 advantages, 334
 disadvantages, 334
Gossip-based approach (63–66) 63
 GOSSIP protocol, 64
 parameters, 64
Gossip algorithms, 65
 Gradient broadcast (GRAB), 137
Graph-theoretic modeling technique, 70
Graph theory, 77
Greedy algorithms, 91, 92
Greedy distributed spanning tree protocol (GDSTR) algorithm, 208
Greedy maximum residual energy (GMRE), 288, 293, 294
 protocol, 288
Grid-based sensor network, 37
 Grid points, 38
 graphical presentations, 38
Ground-based VOR stations, 344
Hard-wired MAC address, 130
HELLO packet, 140
Hello flood attacks, 484
Heterogeneous camera sensor network, 25
Heterogeneous transmission, 86
Heterogeneous wireless sensor networks, 23, 33, 36, 37, 38–42, 47
 applications, 41
 architectures for, 23
 coverage in, 37
 differentiated coverage, 38
 goal of, 40
 inadequate theory of, 42
 stochastic coverage, 39
 systems infrastructure, 42
Heterogeneous wireless sensor networks projects, 42
 resource-oriented protocol, 33
Hierarchical architecture, 23
Hierarchical protocols, 142
High-end nodes, 35, 45
 intel XScale-based nodes, 45
High-end sensor nodes, 34, 35, 38
High-resolution data, 132
Higher-fidelity image, 27
Higher-priority neighbors, 95
HiRLoc techniques, 530
Homogeneous ad hoc networks, 30
 Homogeneous WSNs, 30
Homogeneous mixing model, 53
Homogeneous WSNs, 37
Hop-based coordinates, 214
Hop-b-hop data propagation protocol, 440–445
Hop-by-hop transmissions, 451
Hop interference (UHI), 87
ID distributions, 98
ILP model, 274
In-home sensor nodes, 32
In-network processing, 28
Integer linear programming (ILP), 145, 242
Inter-base-station network, 260
Interference issues, 84
Interference models, 84, 90
 overview of, 90
Interfering transmissions, 86
Internet routing techniques, 195
Intersection graph, 78
Initialization vector, 496
Intrusion-tolerant routing in wireless sensor networks, 497
IP-like routing techniques, 196
 background, 196
 overview, 196
Iterative multilateration algorithms, 351
Joint source-channel coding, 116
K-hop neighborhood, 88
K-local algorithm, 95, 96
Kephart-White (KW) model, 69, 70
Key management schemes, 487–492
 basic random key pre-distribution scheme, 488–489
 extended random key pre-distribution scheme, 489–490
 master-key-based key predistribution scheme, 487–488
multiple space key pre-distribution scheme, 491–492
Kruskal's algorithm, 91

Large phased-array antennas, 344
Lamport's method, 493
Layering-based security approach, 484–485
LEACH, 144
LEACH protocol, 143
pseudo-code, 143
LID values, 152
Limited destination information, 141
Linear chain of causality, 93
Lithium-ion battery, 22
Local algorithms, 94
Local dominating set algorithm, 95
Local randomized greedy algorithm (LRG), 176
Local target protocol (LTP), 462
Low-cost sensor devices, 437
Localization algorithm, 324, 325, 334, 523
categories, 324
Localization schemes, 349
Localization system, 307–310
components of, 310, 523
importance of, 309
requirements of, 310
Localization system division, 523
Localization with a mobile beacon (LMB), 331–334, 526
advantage of, 333
algorithm of, 333
Localized MDS algorithm, 93, 94, 171
Location-aware anchor nodes, 359
Location discovery schemes, 342–343
Location errors (imprecise GPS), 141
Location estimation, 341
aircraft navigation, 341
maritime, 341
robotics, 341
tactical missions, 341
transportation, 341
Location fingerprinting method, 323
Logical Coordinate Routing (LCR), 216
Los Alamos National Laboratory, 27, 29
Lossy wireless sensor networks, 140
geographic routing in, 140
Low-complexity techniques, 342
Low-cost techniques, 342
Low-cost sensor devices, 437
Low-end sensor node, 34, 35, 38
Low-energy directional broadcast, 427
Low-fidelity cameras, 25, 27
Low-power sensor devices, 437
Malicious code propagation, 69–70
epidemic models, 69
Malory, 514
Manhattan norm, 81
Markov chain, 65
Matroid theory, 92
Mediator-wrapper, 41
Medium access control (MAC), 96, 119
MAC algorithms, 496, 499
MAC protocol, 86–87, 120
Medium access mechanism, 97
Meshed multipath routing (M-MPR), 145
steps, 145
Meshed multipath routing algorithm, 148
code description, 148
Message complexity, 93
Message's destination, 98
Message-passing model, 96
Metric space, 81
Microelectromechanical (MEMS) systems, 423
MFR, see Most forward within radius scheme
MILP formulation, 283–288
Minimum cost forwarding algorithm (MCFA), 138
Minimum dominating set (MDS), 91, 167
Minimum mean square estimate (MMSE), 350
Minimum spanning tree (MST), 176
Min-two uniform targets protocol (M2TP), 444
Mixed integer linear programming (MILP) model, 275
Mobile ad hoc networks (MANET), 67–69, 480
Mobile beacons, 331
Mobile element scheduling (MES), 272
Mobile nodes, see MULEs
Mobile relays, 271
Mobile sensors, 249
Mobile sensor network, 67
Mobile sensor nodes, 32
Mobile sinks, 273, 274
use of, 274
Mobile ubiquitous LAN extension (MULEs), 271, 276
approach, 276, 277, 279
architecture, 293
beacons, 278
mobility, 273
nodes, 280
nonshareable (NS) nodes, 280
shareable (SH) nodes, 280
system, 277
Mobile wireless sensor networks, 183
Moore’s law, 479
Most forward within radius scheme, 198, 199
Motion control algorithm, 279
Multi-base-station clustered sensor network architecture, 259
Multi-base-station positioning, 260
Multidimensional scale (MDS), 323
Multihop (ad hoc) communications, 267
Multihop network topology, 510
Multihop routing, 281, 290
protocol, 269
Multilateration algorithm, 352
illustration of, 352
Multinode relocation, 258
Multipath routing, 145–148
Multiple base-stations, 241
Multiple hops, 351
Multiple sensor indoor surveillance (MSIS) project, 228
Multitier multimodal camera sensor network, 45
Nodes repositioning, 245
NoGeo algorithm, 211
NoGeo method, 210
Non-power-constrained nodes, 34
Object recognition, 27
Omnidirectional radio antennas, 78
Online algorithms, 96
Optical (laser) transmission, 423
Optimal node placement, 227
Optimal offline algorithm, 96
Optimal transmission ranges (OTR) approach, 201
Optimized sensor placement, 232
Packet delay components, 506
Pan-tilt-zoom (PTZ) cameras, 25
Passive information gathering, 481
Path-loss exponent, 85, 98
Peer-to-peer computing, 427
energy efficiency of, 436
Peer-to-peer generalized clustering model, 185–186
PEGASIS, see LEACH
Perimeter mobility (PM), 291
Perimeter node, 140
Periodic data collection model, 238
PFR, 448–450
correctness of, 435
energy efficiency of, 436
properties, 448–449
protocol, 445
robustness of, 451
Placement algorithm, 235
illustration of, 235
optimized positioning, 238
Planar methods, 207
Planar subgraph methods, 204–206
Point-in-triangulation (PIT) test, 359
Point-to-point routing solutions, 196
Poisson models, 97
Poisson process, 71
Polynomial-time approximation algorithm, 177
Polynomial time approximation scheme (PTAS), 91
Position-based routing, 196
algorithms, 197
protocols, 195
INDEX 541

Position component, 523
Position computation methods, 315, 528
Post-deployment relocation, 250
Post-deployment sensor relocation, 248–254
Post-facto synchronization approach, 509
Power-aware chessboard-based adaptive routing (PCAR), 31
Power-constrained nodes, 34
Power-efficient gathering in sensor information systems (PEGASIS), 143–144
Power exponential model, 120
Pre-deployed sensor network, 431
Probabilistic approaches, 319
Probabilistic forwarding protocol (PFR), 445–448
Protocol model (PM) 88
Public key cryptography, 472
Quality-of-service (QoS), 27, 201
parameters, 151
Quality-of-service support, 47
Quasi unit disk graph (QUDG), 79, 80, 82, 83
model, 79, 81
Query-driven heterogeneous WSNs, 43

RADAR indoor location system, 348
Radiation detection nodes, 29
Radiation detectors, 28, 29
acoustic sensors, 28
atmospheric sensors, 28
magnetometers, 28
seismic sensors, 28
video cameras, 28
Radioactive source detection, 28
staged architecture, 28
Radio frequency (RF), 423
channel, 334
Radiological dispersal devices (RDDs), 27
Radio propagation models, 312
Random bit string, see Initialization vector
Random deployment schemes, 231
Random distribution model, 37
Random graph model, 71
Random key distribution technique, 71
Random mobility (RM), 290
model, 67
Random node distribution, 97
Random transmission errors, 99
Randomized sensor placement, 230
Range-free techniques, 359
Rayleigh distributed random variable, 80
RBS protocol, 509
Real-time data, 27
Received signal strength indicator (RSSI), 311–313, 343
RECRUIT message, 173
Recursive position estimation, (RPE), 325, 526
algorithm, 328–329
Reference broadcast synchronization, 509
Relative neighborhood graphs (RNGs), 204
Relative removal rate, 53
Reliable event communication, 122
spatiotemporal correlation, 122
Reliable information forwarding using multiple paths (ReIn-ForM) protocol, 149
Reprogramming algorithm, 60
properties, 60
Reprogramming protocol, 59
Request message, 55
Resource-oriented protocol (ROP), 32, 33
analysis of, 36
performance of, 33
RFID tags, 98
Robust distributed algorithms, 424
Robust distributed protocols, 424
Robust position computation, 528
Round trip time (RTT), 279
Route discovery phase, 498
Route request (RREQ) packet, 33
Routing algorithms, 130
Routing protocols, 130
applications, 131
design issues, 131, 132
Routing protocols taxonomy, 129
Replay attack, 525
SAR algorithm, 138
Scalable energy-efficient asynchronous dissemination (SEAD), 273
Scale-free topology, 53
Search Phase, 441 427
Secure node-to-node communication, 472
Secure localization technique, 527
Secure sensor networks, 70
 compromise propagation, 70
Secure time synchronization approaches, 515–518
Security protocols for sensor networks, 495–496, 481
Semidefinite program (SDP), 323
SensEye, 25, 26
 staged architecture, 26
SensEye heterogeneous camera sensor network, 27
SensEye system, 27, 28
Sensing model, 232
Sensor field broadcasting messages, 331
Sensor network, 37, 51, 77, 90, 97, 98, 132, 171, 195, 342, 346–347, 353, 424, 438, 452, 479
 approaches and obstacles, 195
 angle estimation, 353
 distributed algorithms for, 98
 objective of, 97
Sensor networks algorithm, 77
Sensor network architecture, 226
Sensor networks localization, 345–347
Sensor network models, 77
Sensor networks routing protocols, 132–135
 cryptography, 486–487
 distributed protocols, 424
 role, 479
 security attacks, 482–484
 security classes, 481–484
 symmetric cryptography, 486
Sensor networks limitation, 480
 network, 480
 node, 480
 physical, 480
Sensor networks time synchronization, 506
 challenges, 506
 design issues, 507
Sensor network topology, 123
Sensor node, 22, 138
 components, 22
 connectivity, 78
 modeling the, 78
 placement, 228
Sensor nodes mobility, 270–271
Sensor repositioning schemes, 247–248
Sensor routing protocols, 133
 categories of, 133
Sensor-to-MULE communication, 277
Sensor-to-sink transmissions, 271
Sequential assignment routing (SAR), 138–139
SeRLoc techniques, 530
SER protocol, 151
SER protocol parameters, 153
Shortest path first (SPF) algorithm, 164
Shortest-path energy-aware routing, 135
Short-range communications, 274
Signal signature database, 323
Signal-to-interference-plus-noise ratio, 85, 89
Signal to interference ratio, 85
Signal to noise ratio (SINR), 85, 463
Sensor-to-sink transmissions, 271
Single base station, 238
Single node, 54
 base station, 54
 multiple sensor nodes, 54
Sink mobility rates, 286
S-I-S model, 53, 67, 69, 70
Sleep-awake probabilistic forwarding protocol (SW-PFR), 462
Sleeping time, 99
Small-scale robot squads, 268
Smart dust cloud, 426
Smart dust propagation protocol, 442
Smart dust protocols, 443
Smart gossip argument, 66
Space complexity, 93
Spatiotemporal correlation theory, 105, 106
 spatial correlation, 106
 temporal correlation, 106
SPEED architecture, 139
SPEED protocol, 139
SPIN-BC protocol architecture, 55, 56
SPIN family, 54
SPIN protocol, 54
 SPIN-BC, 54
 SPIN-EC, 54
 SPIN-PP, 54
 SPIN-RL, 54
Stargate family processors, 22
Stateless geographic nondeterministic forwarding (SNFG), 139
Static base-station positioning, 244
 approaches for, 244
Static sinks, 269
Stochastic coverage, 39
analytical expressions, 39
Stream-enabled routing (SER), 151
Susceptible infected recovered (S-I-R)
model, 52
Susceptible infected susceptible (S-I-S)
model, 52
Sybil attacks, 484, 525
Synchronization protocols, 509
Synchronization schemes components
access time, 506
propagation time, 506
receive time, 507
send time, 506
Synchronous dynamic random access
memory, 22
System lifetime, 30

Table-driven multipath approach, 138
Tag-based data dissemination technique, 58
TASC algorithm, 181
 pseudocode for, 181
TASC cluster’s nodes distribution, 180
Task-tree (T-tree), 152
TESLA protocol, 496
Three-stage handshaking
(ADV-REQ-DATA), 54
Three-way handshaking mechanism, 62
Threshold-sensitive energy-efficient sensor
network protocol (TEEN), 144
Throughput-capacity networks, 141
Time difference of arrival (TDoA) method,
313, 334
Time division multiple access (TDMA), 505
data dissemination protocol, 56–57
data dissemination, 57
Time division multiple access-based
medium access layer, 56
Time division multiple access slot, 57
Time synchronization protocol sensor
networks (TPSN), 510–512
attacks, 512
TinySec security architecture, 498
Topologically aware worm propagation
model (TWPM), 70
Topology adaptive spatial clustering (TASC)
algorithm, 179, 179
Transmission energy, 98
Transmission power, 254
Tree-based clustering protocol, 171
Triangulation algorithm, 140
Triangulation method, 319
Trickle’s principles, 62
Trickle algorithm, 59–61
Trickle metadata, 61
Trilateration and multilateration method,
316
Triple-key management, 494
graphical presentation, 494
Two-dimensional euclidean plane, 82, 97
Two-dimensional sensor field, 35
Two-ray ground model, 85
Two-tier sensor network architecture, 236

UDI model, 86, 87
Uniform node distribution, 97
Unit ball graph (UBG), 81
definition, 81
Unit disk graph (UDG), 78, 79
model, 78, 80, 81, 85
Ultra low wireless sensor, 423
Variable transmission range protocol (VTRP) 437, 451–461, 465
VOR, 249, 250
Voronoi-based (VOR) method, 248
Voronoi-based (VOR) stations, 354
Voronoi-based (VOR) systems, 344
Voronoi cells, 35
Virtual polar coordinate routing (VPCR),
210
Virtual polar coordinate space (VPCS), 210
Wake-up process, 26
Weight partitioning algorithm, 179
Well-known recognition algorithms, 27
Wide-sense stationary (WSS), 112
Wireless device, see Malory
Wireless sensor network (WSN), 1, 21, 30,
31, 36, 41, 42, 51, 52, 54, 84, 105, 107,
109, 112, 115, 119, 130, 161, 163, 164,
169, 170, 225, 237, 267, 307, 341
advantages, 105
applications, 31, 267
architecture, 107
code update protocols, 59
data dissemination, 54
definition, 521
Wireless sensor network (WSN) (Continued)

- epidemic models, 52
- field of, 342
- graph theory approaches, 169
- heterogeneous, 21
- homogeneous, 21
- joint spatiotemporal correlation, 115
- management of, 41
- mobility, 267
- properties of, 130
- protocols/techniques, 521
- self-configuring, 341

- sound sensors, 42
- spatial correlation, 109
- spatiotemporal correlation, 119
- temporal correlation, 112
- Wireless sensor nodes, 130, 276
- Wormhole attack, 525
- Worst-case node distribution, 97–98

- Zonal algorithm, 176
- Zonal weakly connected clustering algorithm, 183
- Zone-based clustering, 183–185