Contents

List of Contributors xi
Foreword xiii
Preface xv

1 Metalloproteins and Metallopeptides – Natural Metallofoldamers 1
Vasiliki Lykourinou and Li-June Ming

1.1 Introduction 1
1.2 Metalloproteins 2
 1.2.1 Metalloproteins are Nature’s “Metallofoldamers!” 2
 1.2.2 Metal-Triggered Conformational Change of Proteins 3
 1.2.3 Conformational Change of Metalloproteins Caused by Ligand Binding 7
 1.2.4 Protein Misfolding: Causes and Implications – Cu, Zn-Superoxide Dismutase 10
1.3 Metallopeptides 12
 1.3.1 Antibiotic Metallopeptides 13
 1.3.2 Metallopeptides in Neurodegenerative Diseases 20
 1.3.3 Other Metallopeptides 24
1.4 Conclusion and Perspectives 28
Acknowledgements 30
References 30

2 Introduction to Unnatural Foldamers 51
Claudia Tomasini and Nicola Castellucci

2.1 General Definition of Foldamers 51
2.2 Biotic Foldamers 53
 2.2.1 Homogeneous Foldamers 53
 2.2.2 β-Peptides 53
 2.2.3 γ-Peptides 59
 2.2.4 Hybrid Foldamers 60
 2.2.5 Aliphatic Urea Foldamers 63
 2.2.6 Foldamers of α-Aminoxy Acids 64
 2.2.7 Foldamers Containing Amido Groups 65
2.3 Abiotic Foldamers 70
5 Helical Structures Featuring Thiolato Donors
F. Ekkehardt Hahn and Dennis Lewing

5.1 Introduction 159
5.2 Coordination Chemistry of Bis- and Tris(Benzene-o-Dithiolato) Ligands 162
 5.2.1 Mononuclear Chelate Complexes 162
 5.2.2 Dinuclear Double-Stranded Complexes 165
 5.2.3 Dinuclear Triple-Stranded Complexes 167
 5.2.4 Coordination Chemistry of Tripodal Tris(Benzene-o-Dithiolato) Ligands 172
5.3 Coordination Chemistry of Mixed Bis(Benzene-o-Dithiol)/Catechol Ligands 176
 5.3.1 Dinuclear Double-Stranded Complexes 176
 5.3.2 Dinuclear Triple-Stranded Complexes 178
5.4 Subcomponent Self-Assembly Reactions 181
5.5 Summary and Outlook 186
References 186

6 Photophysical Properties and Applications of Lanthanoid Helicates
Jean-Claude G. Bünzli

List of Acronyms and Abbreviations 193
6.1 Introduction 194
6.2 Homometallic Lanthanoid Helicates 197
 6.2.1 Influence of the Triplet-State Energy on Quantum Yields 198
 6.2.2 Radiative Lifetime and Nephelauxetic Effect 203
 6.2.3 Site-Symmetry Analysis 206
 6.2.4 Energy Transfer between Lanthanoid Ions 208
 6.2.5 Lanthanoid Luminescent Bioprobes 210
 6.2.6 Other Investigated Helicates 219
6.3 Heterometallic d-f Helicates 223
 6.3.1 Basic Photophysical Properties 223
 6.3.2 Eu^{III}-to-Cr^{III} Energy Transfer 227
 6.3.3 Control of f-Metal Ion Properties by d-Transition Metal Ions 228
 6.3.4 Sensitizing NIR-Emitting Lanthanoid Ions 235
6.4 Chiral Helicates 236
6.5 Extended Helical Structures 239
6.6 Perspectives 240
Acknowledgements 241
References 241
7 Design of Supramolecular Materials: Liquid-Crystalline Helicates

Raymond Ziessel

7.1 Introduction 249
7.2 Imino-Bipyridine and Imino-Phenanthroline Helicates 252
 7.2.1 Liquid Crystals from Imino-Polypyridine Based Helicates 257
7.3 Conclusions 266
7.4 Outlook and Perspectives 267
Acknowledgements 268
References 268

8 Helicates, Peptide-Helicates and Metal-Assisted Stabilization of Peptide Microstructures

Markus Albrecht

8.1 Introduction 275
8.2 Selected Examples of Metal Peptide Conjugates 276
8.3 Helicates and Peptide-Helicates 279
 8.3.1 Helicates 279
 8.3.2 Peptide-Helicates 281
8.4 Metal-Assisted Stabilization of Peptide Microstructures 288
 8.4.1 Loops and Turns 288
 8.4.2 α-Helices 292
 8.4.3 β-Sheets 297
8.5 Conclusion 298
References 300

9 Artificial DNA Directed toward Synthetic Metallofoldamers

Guido H. Clever and Mitsuhiko Shionoya

9.1 Introduction 303
 9.1.1 Oligonucleotides are Natural Foldamers 303
 9.1.2 Biological Functions and Beyond 305
 9.1.3 DNA Nanotechnology 306
 9.1.4 Interactions of DNA with Metal Ions 308
9.2 The Quest for Alternative Base Pairing Systems 309
 9.2.1 Modifications of the Hydrogen Bonding Pattern 310
 9.2.2 Shape Complementarity 310
 9.2.3 Metal Coordination 310
9.3 Design and Synthesis of Metal Base Pairs 311
 9.3.1 Rational Design of Metal Base Pairs 311
 9.3.2 Model Studies 312
 9.3.3 Synthesis of Modified Nucleosides 312
 9.3.4 Automated Oligonucleotide Synthesis 314
 9.3.5 Enzymatic Oligonucleotides Synthesis 315
9.4 Assembly and Analysis of Metal Base Pairs Inside the DNA Double Helix 315
 9.4.1 Strategies for Metal Incorporation 315
 9.4.2 Analytical Characterization in Solution 316
 9.4.3 X-Ray Structure Determination 317
9.5 Artificial DNA for Synthetic Metallofoldamers 318
 9.5.1 Overview 318
 9.5.2 The Hydroxypyridone Base Pair 320
 9.5.3 The Salen Base Pair 320
 9.5.4 The Imidazole, Triazole and 1-Deazaadenine-Thymine Base Pairs 323
9.6 Functions, Applications and Future Directions 324
 9.6.1 Duplex Stabilization and Conformational Switching 324
 9.6.2 Sensor Applications 325
 9.6.3 Magnetism and Electrical Conductance 325
 9.6.4 Future Directions 326
References 327

10 Metal Complexes as Alternative Base Pairs or Triplets in Natural and Synthetic Nucleic Acid Structures 333
 Arnie De Leon, Jing Kong, and Catalina Achim

10.1 Introduction 333
10.2 Brief Overview of Synthetic Analogues of DNA: PNA, LNA, UNA, and GNA 338
10.3 Metal-Containing, Ligand-Modified Nucleic Acid Duplexes 340
 10.3.1 Design Strategy 341
 10.3.2 Duplexes Containing One Alternative Metal–Ligand Base Pair with Identical Ligands 342
 10.3.3 Duplexes Containing One Alternative Metal–Ligand Base Pair with Different Ligands 359
10.4 Duplexes Containing Multiple Metal Complexes 361
10.5 Metal-Containing, Ligand-Modified Nucleic Acid Triplexes 367
10.6 Summary and Outlook 367
Acknowledgement 369
Abbreviations 369
References 370

11 Interaction of Biomimetic Oligomers with Metal Ions 379
 Galia Maayan

11.1 Introduction 380
11.2 Single-Stranded Oligomers in Which Metal Coordination Templates, or Templates and Nucleates the Formation of an Abiotic Helix 381
11.3 Folded Oligomers in Which Metal Coordination Nucleates the Formation of an Abiotic Single-Stranded Helix 384
11.4 Folded Oligomers in Which Metal Coordination Enhances Secondary Structure and Leads to Higher-Order Architectures 393
 11.4.1 Metal Coordination in Folded Aromatic Amide Oligomers 394
 11.4.2 Metal Coordination in Peptidomimetic Foldamers 396
11.5 Concluding Remarks 402
References 402