Index

Note: Page numbers in italic type refer to figures. Page numbers in bold type refer to tables.

A/P ratio 198–9, 207
ABA treatment 474–5
Abietane 331
Abietic acid 14
Accelerator mass spectrometry (AMS) 462–3
applications 476–8
electromagnetic filters 464–5
high-energy analysis 470–2
ion source 466–7
isobar removal 463
low-energy analysis 468–9
low voltage machines 473
particle stripping 470
performance 463–4
sample masses 462
sample preparation
 graphitisation and combustion 475–6
 pretreatment 474–5
 sensitivity 464
 separation efficiency 472
 single-stage 473
 tandem accelerator 469–70
Acrylic paints 349–51, 352
Acrylic resins 27
Adduct ions 47
Adhesives 117
 artificial 28
 GALDI/MS 159
 see also Animal glues
African art objects
 blood 450–2
 complex patina mixtures 452–3
Agathic acid 14
Agathic acid 14
Aline wax sculpture 118
Alizarin 442–3
Alkyd paints 354–6
Alkyl chloroformates 247
Aloe resin 147–9, 149
Ambers 18–19
Amiet, Cuno 153–5
Amino acids 4, 5
 isotope ratios in bones and experimental animals 412–15
 makeup of animal products 6
 racemisation 251–3
 see also Proteomics
Amphorae 218–22
α-amyrine 80, 81
Animal fats 99–100
 determining origin 416–19
 distinguishing from vegetable fats 197
 ESI/MS of triacylglycerols 123, 124–5
 fatty acid composition 7, 9
 horse, hydrogen isotope ratios 422
 sample preparation, electrospray ionisation mass spectrometry 103
 see also Lipids
Animal glues 167–8
 graphite-assisted laser desorption/ionisation mass spectrometry 159
 molecular markers (pyrolysis) 307
 in mortars 179
 as paint binder 238
 peptide mass mapping 177
 pyrolytic molecular markers 307
Animal resins 17–18
Animal waxes 10–11, 99
Annatto 25
Anthraquinoid dyes 23, 369–72
Antinoe 90–1
 GC/MS of lamp illuminant residue 201–3

Organic Mass Spectrometry in Art and Archaeology Edited by Maria Perla Colombini and Francesca Modugno
© 2009 John Wiley & Sons, Ltd
Arabic gum composition protein content
Arabinose, pyrolysis Argancy
Arrhibidae chica Asphalt
Asphaltenes Atmospheric pressure chemical ionization (APCI)
AW2 resin Azelaic acid
ratio to glycerol ratio to palmitic acid transmethylation yields from
Bakelite
Bamana sculptures Barberry
Bark tar, see Birch bark tar
Beeswax ageing
in archaeological finds electrospray ionisation mass spectrometry
Biotin Betulone
Betulone Binding media, see Paints, binding media
Birch bark tar
Biotin Blackburn
Black alder Blood
Blue-violet dyes
Boliv Bone
Bonfigli, Benedetto Boswelic acids
Botany Boucher, François
Brassicaceae oils
Brazilwood Brown dyes
BSTFA Building materials
Buflfalmacco, Bonamico Calcium caseinate
Candelilla wax Candelilla wax
Capillary electrophoresis red dyes
sample preparation
Carbon isotopic fractionation derivatisation and
marine ecosystems during photosynthesis
radiocarbon, see Radiocarbon
relative isotopic abundance in archaeological bone and tissue
cholesterol in bone and tissue fatty acids
instrumental configuration
Cardinal Richelieu
Carnauba wax Carotenoid dyes
Casein Castor oil
Cellulose Cellulose acetate
Ceresine Chain scission
Charcoal Charge residue model (CRM)
Chemical imaging
Chemical ionization (CI)
Chinese varnish Chinese wax
Chirality, amino acids Cholesterol
Chromatographic techniques
Coccus ceriferus
Cochineal Collagen
Copper acetate Cow milk fat
Crassulacean acid metabolism
Crocins
Crucifer
Curd

see also Gas chromatography; Reverse-phase liquid chromatography

Coccus ceriferus
Cochineal Collagen
Copper acetate Cow milk fat
Crassulacean acid metabolism
Crocins
Crucifer
Curd

see also Milk
Curie-point pyroliser 305–6
Cyclohexanone resins 156–9
Cytochrome c 69, 70

Dachour 294
Dalou, Aime-Jules 119, 122
Dama con Liocorno 209
Dammarene, structure 331
Dammar resin 17, 138, 139
ageing 141
discriminating from mastic 339
pyrolysis 337–8, 338
Databases
mass spectral 66–7
protein binders 173
Deconvolution 70–1
Dehydroabietic acid 220, 230
Dendrochronology 443–5
Derivatisation
for gas chromatography mass spectrometry
lipids 194, 195
protein paint binders 245–7
resins 216–17, 218, 230
15-hydroxy-7-oxodehydroabietic acid 231
for isotope ratio mass spectrometry 400, 401–2
data correction 406–7
for pyrolysis gas chromatography mass spectrometry 305
beeswax 316–18
lipids 308–10
plant resins 313–14
terpenoid resins 339–42
Desorption electrospray ionisation (DESI) 45, 52–3
Deuterium ratio, instrumental
configuration 405–6
Dicarboxylic acids 106, 107, 198–9
Dietary reconstruction 408–10
amino acids 412–15
fatty acids 410–12
Dihydroxycarboxylic acids 201–3
Direct exposure mass spectrometry
(DE-MS) 79
case studies 90–3
lipids 101–2, 105–6
reference materials 80–7
Direct exposure probe (DEP) 101
Direct inlet mass spectrometry (DI-MS) 43, 78, 79
case studies 88–9
lipids 101–2, 106
Direct insertion probe 101
Direct mass spectrometry, see Mass spectrometry
Direct temperature resolved mass spectrometry (DTMS) 43, 87–8, 93
Diterpenoid resins 14–16
graphite-assisted laser desorption/ionisation mass spectrometry 145–50
pyrolysis gas chromatography-mass spectrometry 333–9
solid phase microextraction 272–3
structures of main constituents 331–2
Dogon wooden statuettes 451–2, 454
Drying oils 198–9, 205–7
definition 192
distinguishing from non-drying oils 310–11
Dyes 22, 365–7
anthraquinone 23, 369–72
carotenoid 377
chemical composition 23–5
direct mass spectrometry 23–5
flavonoid 24, 275–380
LC/MS, sample preparation 367–9
madder 442–3
mordant 368
purple 24
red 369–74
secondary ion mass spectrometry 442–3
yellow and brown 374–80
Egg 5
amino acid composition 6
as binder 167
fatty acid composition 7
molecular markers (pyrolysis) 307
in mortars 179
in paint binders 238
secondary ion mass spectrometry 445–7
peptide mass mapping 176–7
Elderberry 381
Electron ionization (EI) 45–7, 45
data interpretation 66–7
lipids 101–2, 102–3, 126
Electro-osmotic flow 367
Electrospray ionization (ESI) 45, 69
lipids 102–3, 122–5, 126
Electrostatic analyser (ESA) 464–5
Elemi 13
Enzyme-linked immunosorbent assay (ELISA) 169
Epilaccishellolic acid 232
Epishellolic acid 230, 232
Epoxy resins, applications 27
20, 24-epoxy-25-hydroxydammaren-3-one 232
Esparto wax 12
Euphorbia sp. 11
Fatty acids 6–9
 isotope ratios
 origin determination 416–19
 preservation of ratios 420–23
 in skeletal and soft tissue remains 410–12
 lipid identification and 197
Fermentation, paint binders 240
Fibres
 flavonoid dyes 375
 secondary ion mass spectrometry 440–5, 442–3
Fig latex 304
Fish glue 168, 176
Flavonoid dyes 24–5, 275–80, 375–80
 chemical composition 24
Fontana, Lucio 354
Fossil resins 18–19
Fossil waxes 12, 99
Fourier transform mass analyser 55, 58–60
Frankincense 16, 83, 264, 329
 composition 13
 gas chromatography mass spectrometry analysis 218
 solid phase microextraction gas chromatography mass spectrometry analysis 265, 266–9, 275–81
 comparison with classical solvent extraction 274
Fruit tree gum 20, 21
Fustic 24
Galactose 314
Galbanum 264, 265
GALDI, see Graphite assisted laser desorption ionisation
Garlic 5, 6
Gas chromatography 43
Gas chromatography mass spectrometry
 analytical procedure 192–6
 blank runs 248
 lipids
 applications 192
 case studies 201–9
 contamination 193
 data interpretation 196–200
 proteins
 amino acid racemisation 251–3
 analysis 247–9
 pretreatment 243–5
 sampling 242
 resins 215–18
 sample size 193
Gas phase 39
Gauguin, Paul 118
Gelatine 167
Ghatti 21
Glucose, pyrolysis 314, 315
Glues, see Animal glues
Glycerol 199
Glycerolipids 4, 6–9
Graphite-assisted laser desorption ionisation
 (GALDI) mass spectrometry 131–2
 adhesives 159
 aqueous paint binders 159
 artworks 144–5
 cyclohexanone resins 156–9
 detection limits 144
 natural resins 145–50
 pure triterpenes 133–8
 triterpenoid 138–42
 oils and fats 152–6
 rubber 149–50
 waxes 150–2
Graphitisation 475
Guar 21
Guimet Museum 284, 288
Gums 20, 21, 168
Haem 451
Hair 462
Headspace solid phase microextraction (HS-SPME) 216
Heartwood 443–4
Heating
 resins 19
 see also Pyrolysis
Hematein 381
Henna 25
Hexamethyldisilazane (HMDS) 341–2
Hide glue 177
High performance liquid chromatography (HPLC)
 carotenoid dyes 377
 indigoid dyes 380–1
 proteins in binders 168
 red dyes 372
 resins 217–18
 reverse phase 366
 anthraquinone dyes 369–70, 371
 flavonoid dyes 375–6
 indigoid dyes 380–1
 sample preparation 367–9
 reverse phase, blue dyes 381–3
High temperature gas chromatography mass spectrometry 196
High Voltage Engineering Europe 465
Hinoki cypress 444–5
Hodler, Ferdinand 156
Honey 21
Horyuji Temple 444
Hydrogen
 isotope ratio mass spectrometry 405–6
 relative isotopic abundance 393
 fatty acids 420
Hydrolysis, paint binder proteins 243–4
15-hydroxy-7-oxodehydroabietic acid 231
Hydroxydammarenone 135, 136
Iceman 477
Incense 12, 281
 solid-phase microextraction profile 282
Indigo 23, 380
Indigoid dyes 23–4, 380–1
Inlet system 42–3
Instrumentation
 accelerator mass spectrometry 463, 465–73
 inlet system 42–3
 ionization techniques, see Ionization techniques
 isotope ratio mass spectrometry (IRMS) 398–9
 mass analyser 55–7
 resolution 53–4
 overview 41–2
 resolution 53, 54
Ion evaporation model (IEM) 50
Ionization techniques 42–3, 45
 accelerator mass spectrometry 466–7
 atmospheric pressure chemical (APCI) 50–1
 chemical (CI) 47–9
 desorption electrospray (DESI) 52–3
 electrospray (ESI), see Electrospray ionization
 graphite-assisted laser desorption (GALDI) 132–3
 for inorganic materials 53
 matrix-assisted laser desorption (MALDI) 51–2, 131–2
 soft 47, 67–71
Ions
 definition 39
 metastable 60
 pseudomolecular 48
Ion trap mass analyser 55
Isatis indigotica 380
Isinglass 168
Isobars 463
Isopimaric acid 14
Isotope ratio mass spectrometry (IRMS) 392
 advantages 397
 analytical considerations 398–9
 applications
 amino acids in bones and experimental animals 412–15
 bone and soft tissues
 carbon 408
 cholesterol 408–10
 fatty acids 410–12
 carbon ratios in animal fats 416–19
 fatty acid hydrogen ratios 420–3
 organic residues in pottery 415
 compound-specific 403–6
 instrumentation 398–9
 for carbon ratio measurement 403
 sample preparation 400–1
Isotopes 64–5
 see also Isotopic fractionation; Isotope ratio mass spectrometry; Radiocarbon
Isotopic fractionation 393–6
 see also Kinetic isotope effect
Japan wax 100, 110–15, 112, 122, 155, 156
Keratin 6
Ketone Resin N 158
Ketone resins 27, 345
Kinetic isotope effect 406–7
 see also Isotopic fractionation
Kyphi 281, 282–3
La Castellina 124
La Fangade 88–9
La Semeuse 118
Labdane 331
Labdanum 14, 264, 265, 266–9
LABEC laboratory 477
Laccifer lacca Kerr 17
Lady’s bedstraw 23, 372
Lamp residues 201–2
Lanolin 11
Lanostane 332
Lard 7
 see also Animal fats
Laropal K80 345–6, 345
Latex paints 356
Lead soap 449
Lead white 445–7
Levopimaric acid 14
Libby mean life 460
Light, resin ageing and 142
Liguria 93
Linseed oil 152
 fatty acid composition 7
 GALDI mass spectrum 153
 in paint binder, gas chromatography mass spectrometry
 trace 205–6
 pyrogram 309
Lipids 191–2
 analytical methodology 100–1
 archaeological samples 115–17
 in complex mixtures 453
 degradation 8
 derivatisation for gas chromatography mass spectrometry 194, 195
 fatty acid composition 197
 gas chromatography mass spectrometry data interpretation 196–200
 lipids 205–9
 ionisation methods
electron ionisation 101–2, 126
electrospray 102–3, 122–5, 126
 from marine products 9
 oxidation 8
 in paint samples 197–9, 205–9
 see also Animal fats; Vegetable oils; Waxes
Liquid chromatography 43
 see also Capillary electrophoresis; High performance liquid chromatography
LMW resins 345–6
Locust bean 20, 21
Logwood 25, 381–3
Lorentz force 464
Lucerne 151
Lupenone 223, 224
Lupeol 224

Madder dyes 373
 chemical composition 23
 LC/ESI-MS 371
 secondary ion mass spectrometry 442–3
Madonna con Bambino in Trono e due Angeli 207
Mai mask 156, 157
Maillard reactions 244
Makarov, Alexander 58
Manila copal 336
Manzoni, Piero 353
Mass analyser
 basic principles 54–5
 detectors 60
 double focusing 55
 Fourier transform ion cyclotron resonance 59–60
 ion traps 57–8
 Orbitrap 58–9
 resolution 53, 54
 time of flight 56–7
Mass number 64
Mass spectrometry 36–7, 79
 advantages and characteristic features 38–9
 beeswax 106–7, 110, 123–4
 data interpretation 63–4
 electron ionization 66–7
 isotopes 64–5
 nitrogen rule 66
 soft ionization 67–71
 from electron ionization 66–7
 imaging 71–2
 information obtainable 40–1
 instrumentation, see Instrumentation
 ionisation techniques, see Ionization techniques
 large molecules 69
 lipids
 archaeological samples 115–17
 electron ionisation mode 101–2
 electrospray ionisation 102–3
 reference materials
 beeswax 106–7, 110
 candelilla wax 114
 carnauba wax 109–14, 111
 palmitic acid 105–6
 spermaceti 108–9
 vegetable oils 114–15
 wax sculptures 117–22
 mass analyser, see Mass analyser
 nitrogen rule 66
 for proteomics 172–3
 separation techniques 43
 tandem 60–3
 terpenoid resins
 case studies 88–93
 reference samples 80–8
Mass-to-charge ratio 37–8
Mastic resin 16, 91, 143
 ageing 140, 141
 composition 13
 discriminating from dammar 339
 GALDI spectrum 140
 gas chromatography mass spectrometry analysis 227–8
 mass spectrum 83
 pyrolysis 338–9
 solid phase microextraction gas chromatography mass spectrometry analysis 266–9
Matrix assisted laser desorption ionization (MALDI) mass spectrometry 45, 51–2, 131–2
 see also Graphite assisted laser desorption ionisation mass spectrometry; Proteomics
 Messer Fillipo cell 319
 Metal ions 168
 lipids and 449
 proteins and 239–40, 244
 Metastable ions 60
<table>
<thead>
<tr>
<th>Index</th>
<th>489</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylation</td>
<td>194, 195</td>
</tr>
<tr>
<td>see also Derivatisation</td>
<td></td>
</tr>
<tr>
<td>Methylene blue</td>
<td>380, 382, 383</td>
</tr>
<tr>
<td>Microcrystalline wax</td>
<td>12</td>
</tr>
<tr>
<td>Milk</td>
<td>167</td>
</tr>
<tr>
<td>cow</td>
<td>124, 125</td>
</tr>
<tr>
<td>horse, hydrogen isotope ratios</td>
<td>422, 422</td>
</tr>
<tr>
<td>as paint binder</td>
<td>238</td>
</tr>
<tr>
<td>pyrolysis, molecular markers</td>
<td>307</td>
</tr>
<tr>
<td>Molecular ions</td>
<td>46</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>40</td>
</tr>
<tr>
<td>Monocarboxylic acids</td>
<td>105–6</td>
</tr>
<tr>
<td>Monoterpenes</td>
<td>270–1</td>
</tr>
<tr>
<td>see also Terpenoid resins</td>
<td></td>
</tr>
<tr>
<td>Montan wax</td>
<td>12</td>
</tr>
<tr>
<td>Mordant dyes, LC/MS, sample preparation</td>
<td>368</td>
</tr>
<tr>
<td>Morinda</td>
<td>23</td>
</tr>
<tr>
<td>Moringa oil</td>
<td>9</td>
</tr>
<tr>
<td>Mortars</td>
<td></td>
</tr>
<tr>
<td>organic additives</td>
<td>169</td>
</tr>
<tr>
<td>proteomic analysis</td>
<td>178, 179</td>
</tr>
<tr>
<td>Mowilith</td>
<td>343</td>
</tr>
<tr>
<td>Multivariate analysis, see Principal Components Analysis</td>
<td></td>
</tr>
<tr>
<td>Mummification balms</td>
<td>262, 284–6</td>
</tr>
<tr>
<td>Munch, Edvard</td>
<td>180</td>
</tr>
<tr>
<td>Myrrh</td>
<td>13, 16</td>
</tr>
<tr>
<td>solid phase microextraction gas chromatography mass spectrometry analysis</td>
<td>264, 265, 266–9</td>
</tr>
<tr>
<td>Neoabietic acid</td>
<td>14</td>
</tr>
<tr>
<td>NIST/EPA/NIH Mass Spectral Library</td>
<td>66–7</td>
</tr>
<tr>
<td>Nitrogen</td>
<td></td>
</tr>
<tr>
<td>isotope ratios, instrumental configuration</td>
<td>404</td>
</tr>
<tr>
<td>isotopic fractionation</td>
<td>395–6</td>
</tr>
<tr>
<td>relative isotopic abundance</td>
<td>393</td>
</tr>
<tr>
<td>plants</td>
<td>395</td>
</tr>
<tr>
<td>Nitrogen rule</td>
<td>66</td>
</tr>
<tr>
<td>Nonacosan-15-one</td>
<td>68</td>
</tr>
<tr>
<td>Nylons, applications</td>
<td>27</td>
</tr>
<tr>
<td>Oetzi</td>
<td>477</td>
</tr>
<tr>
<td>Oils, see Vegetable oils</td>
<td></td>
</tr>
<tr>
<td>Oil paints</td>
<td>154</td>
</tr>
<tr>
<td>see also Paints, binding media, lipids</td>
<td></td>
</tr>
<tr>
<td>Old fustic</td>
<td>24</td>
</tr>
<tr>
<td>Oleanine, structure</td>
<td>332</td>
</tr>
<tr>
<td>Oleanolic acid</td>
<td>80, 81</td>
</tr>
<tr>
<td>Oleic acid</td>
<td></td>
</tr>
<tr>
<td>in lamp residues</td>
<td>201–2</td>
</tr>
<tr>
<td>ratio to stearic acid, paint binder ageing</td>
<td>199</td>
</tr>
<tr>
<td>Olibanum, see Frankincense</td>
<td></td>
</tr>
<tr>
<td>Olive oil</td>
<td>7</td>
</tr>
<tr>
<td>Orbitrap mass analyser</td>
<td>55, 58–9</td>
</tr>
<tr>
<td>Orchil, chemical composition</td>
<td>24</td>
</tr>
<tr>
<td>Ouricuri wax</td>
<td>11</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>238</td>
</tr>
<tr>
<td>Oxidation</td>
<td></td>
</tr>
<tr>
<td>lipids</td>
<td>8</td>
</tr>
<tr>
<td>triterpenoid resins</td>
<td>16–17</td>
</tr>
<tr>
<td>7-oxodehydroabietic acid</td>
<td>82, 85</td>
</tr>
<tr>
<td>Oxygen isotope ratios</td>
<td>393, 406</td>
</tr>
<tr>
<td>Ozokerite</td>
<td>12, 151</td>
</tr>
<tr>
<td>P/S ratio</td>
<td>199, 207, 447</td>
</tr>
<tr>
<td>Paints</td>
<td></td>
</tr>
<tr>
<td>binding media</td>
<td>166–8, 237–9, 303–4</td>
</tr>
<tr>
<td>aqueous</td>
<td>159</td>
</tr>
<tr>
<td>beeswax</td>
<td>10–11</td>
</tr>
<tr>
<td>cyclohexanone</td>
<td>156–9</td>
</tr>
<tr>
<td>gas chromatography mass spectrometry analysis</td>
<td>205–9</td>
</tr>
<tr>
<td>graphite assisted laser desorption ionisation/MS</td>
<td>152–9</td>
</tr>
<tr>
<td>identification</td>
<td>249–51</td>
</tr>
<tr>
<td>lipids</td>
<td>9, 152–6, 192</td>
</tr>
<tr>
<td>fatty acid composition</td>
<td>197–8</td>
</tr>
<tr>
<td>linseed oil</td>
<td>205–6</td>
</tr>
<tr>
<td>proteins</td>
<td>168–9</td>
</tr>
<tr>
<td>animal glues</td>
<td>238</td>
</tr>
<tr>
<td>databases</td>
<td>173</td>
</tr>
<tr>
<td>egg</td>
<td>238, 445–7</td>
</tr>
<tr>
<td>hydrolysis</td>
<td>243–4</td>
</tr>
<tr>
<td>reference materials</td>
<td>249</td>
</tr>
<tr>
<td>sampling</td>
<td>242</td>
</tr>
<tr>
<td>synthetic</td>
<td>156–9</td>
</tr>
<tr>
<td>acrylic</td>
<td>349–51</td>
</tr>
<tr>
<td>alkyd</td>
<td>354–6</td>
</tr>
<tr>
<td>vinyl</td>
<td>351–4</td>
</tr>
<tr>
<td>latex</td>
<td>356</td>
</tr>
<tr>
<td>physico-chemical properties</td>
<td>303–4</td>
</tr>
<tr>
<td>protein databases</td>
<td>173</td>
</tr>
<tr>
<td>secondary ion mass spectrometry</td>
<td>445–7, 445–9</td>
</tr>
<tr>
<td>silicone</td>
<td>356</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>105–6, 194–5</td>
</tr>
<tr>
<td>esters</td>
<td>106–8, 123–4</td>
</tr>
<tr>
<td>glycerol and</td>
<td>199</td>
</tr>
<tr>
<td>ratio to azelaic acid</td>
<td>198–9, 207</td>
</tr>
<tr>
<td>ratio to stearic acid</td>
<td>447</td>
</tr>
<tr>
<td>alkyd paints</td>
<td>356</td>
</tr>
<tr>
<td>drying oils and</td>
<td>199, 207</td>
</tr>
<tr>
<td>Palmitin</td>
<td>122</td>
</tr>
<tr>
<td>Palustric acid</td>
<td>14</td>
</tr>
<tr>
<td>Paraffin</td>
<td>12, 100, 122</td>
</tr>
<tr>
<td>Paraloid B72</td>
<td>26, 349</td>
</tr>
</tbody>
</table>
Index

Peptide mass mapping (PMM) 170–3
building materials 178–80, 182–4
data analysis 175
measurement 175
proteolytic cleavage 171–2
sample preparation 174–5
Perrier, Alexander 159
Persian berries, chemical composition 24
Phenolic resins 12, 17
Photosynthesis 394
Pigments
aloe 147
interfering effects in protein binder analysis 244
secondary ion mass spectrometry 447–9
Pimurane, structure 331
Pimamic acid 14
degradation, proteins 241
Pine

gas chromatography mass spectrometry analysis 218
oxidation pathways 221
solid phase microextraction gas chromatography mass spectrometry analysis 265, 266–9
Pine resin 14–15, 88–9
composition 13
diterpenoid compounds 14
graphite assisted laser desorption ionisation mass spectrometry 145–6
solid phase microextraction 264–70, 265, 266–9
in wax sculptures 121, 122
see also Terpenoid resins
Pitch 19, 218–19
Plants 394, 395
Plant waxes 11–12
Plinius 3, 202
Pollock, Jackson 354
Polyamides 27
Poly(butyl methacrylate) (PBMA) 343–4
Poly(EA-co-MMA) paints 350
Poly(ethylene glycols) 27
Polymers 4, 26–8
applications 27
degradation 438–40
pyrolysis gas chromatography mass spectrometry 342–6
secondary ion mass spectrometry 438–40
thermal degradation mechanisms 347–8
Poly(methyl methacrylate) (PMMA) 26
Poly(nBA-co-MMA) paints 351
Polyphenols 378–80
Polysaccharides 4, 20–2, 314–16
Polyurethanes 27
Polyvinyl acetate (PVAc) 343, 351–4
Polyvinyl chloride (PVC), pyrolytic thermal degradation 348
Poppy seed oil, mass spectrum 114
The Post House at Oschwand 154
Principal Components Analysis (PCA) 250
DE-MS data 90–1, 92
gas chromatography mass spectrometry of resins 221–2
Product ion scan 60–1
Proteases 171–2
Proteins 4–6, 165–6
amino acid racemisation 251–3
amino acid sequencing 5
artworks 180–1
biological degradation 240
in building materials 169–70, 178, 179
degradation 171–2, 174
denaturing 4–5
environmental 240–2
hydrolysis 243–4
metal ions and 239–40
in paint binders 176–8
animal glues 238
egg 238, 445–7
high-performance liquid chromatography 168
identification 249–51
pH changes 5
pyrolysis 306–8
see also Amino acids; Peptide mass mapping
Protonated molecules 48
Purple dyes, chemical composition 24
Pyrolysis direct mass spectrometry 79
Pyrolysis gas chromatography mass spectrometry 304–6
beeswax 316–18
case studies 318–22
Monumental Cemetery, Pisa 320–21
mordant gilding, Teodolinda's chapel 322
wall paintings 319
lipids 308–12
polysaccharides 314–16
proteins 306–8
synthetic polymers 342–6
terpenoid resins 330–3
derivatisation methods 339–42
Quadrupole mass analyser 55, 56
triple 61
Quercitron bark 24
Rabbit glue 168
Racemisation, amino acids 251–3
Index 491

Radiocarbon dating 459–63
 calibration 460
 sample preparation 473–4
 timescale 460
see also Accelerator mass spectrometry
Radiometric carbon dating 461
Radish oil 202
Raffaelli, Jean-Francois 155–6
Raffaello 209
Rapeseed oil 7, 197
Raphael 209
Red dyes 372–4
 see also Anthraquinones
Reference materials
 lipids 104–15
 proteins, paint binders 249
 resins 80–8
 solid phase microextraction 264–70
Reflectron 56–7, 57
Regalrez 346, 1094
Relbunium, chemical composition 23
Resins 12–14, 77–8, 327–30
 animal 17–18
 chemical composition 13
 derivatisation 313–14
 diterpenoid, see Diterpenoid resins
 fossil 18–19
 gas chromatography mass spectrometry 215–18
 case studies
 aromatic resin 228–9
 bark tar 222–7
 frankincense 218
 mastic resin 227–8
 pine pitch 218–22
 terpenoid varnishes 229–32
 graphite assisted laser desorption ionisation/MS 145–50
 heating 19
 phenolic 12, 17
 pitch and tar 19
 synthetic 26, 156–9, 342–6
 see also Polymers
 triterpenoid, see Triterpenoid resins
Reverse phase liquid chromatography (RPLC),
 see High performance liquid chromatography, reverse phase
Rhamnus bark 24
Ricinoleic acid 8
Rosin, see Colophony
Roty, Louis-Oscar 118
Rubber, graphite assisted laser desorption ionisation/MS 149–50
Rubia tinctorum roots 370, 371
S/S ratio 199
Safflower dyes 25
Saffron 25, 376, 377–80
Saint Catherine, Znojimo 182, 183
Sample preparation
 accelerator mass spectrometry 473–6
 gas chromatography-mass spectrometry, proteins 243–4
 lipids, gas chromatography mass spectrometry 192–3
 secondary ion mass spectrometry 436–7
 waxes, ESI/MS 103
Sandalwood, dyes, chemical composition 25
Sandarac 13, 15, 335
Sandaracopimaric acid 14
Santa Croce frock 477
Sapwood 443–4
Sawwort 24
Sebacic acid 107
Secondary ion mass spectrometry (SIMS) 434
 applications
 archaeological blood 450–2
 archaeological soft tissues 449–50
 complex mixtures 452–3
 natural fibres 440–5
 painting materials 445–9
 polymers 438–40
 wood 443–5
 charge suppression 435
 chemical imaging 435–6, 436–7, 437–8, 453, 454
 data interpretation 437–8
 instrumentation 434–6
 process overview 433–4
 sample preparation 436–7
Separation techniques 43
Sequential injection 468
Sesquiterpenes 13–14, 271
 see also Terpenoid resins
Shell 462
Shellac 17–18, 147, 148, 314
Side-group elimination 348–9
Silicone paints 356, 357
Silk 6, 440, 443
Silver birch 25
 see also Birch bark tar
Silylation 194, 196, 216–17, 310
 proteins 246–7
Skin 411, 462
Smal discoulouration 449
Soft ionisation 47–53
 data interpretation 67–71
Soft tissues
 relative isotopic abundances 408–10, 410–12
 secondary ion mass spectrometry 449–50
Solid phase microextraction (SPME) 261–2
 case studies
 archaeological samples
 at 80°C 291–7
 at room temperature 284–91
 frankincense 275–81, 276–80
 incense 282
 comparison with classical solvent extraction 273, 274
 fibre coatings 271–3
 optimization 270–4
 process overview 262–4, 263
 reference sample analysis 264–70
 sampling temperature 270–1
 sampling time 271–3
Spermaceti wax 11, 99, 100, 108–9
Spilamberto Tower, wall painting 209
Static-SIMS 434
Stearic acid
 ratio to oleic acid 199
 ratio to palmitic acid 199, 356, 447
Sterols 197
Storax resin 17
Strasbourg turpentine 13
Sugars, pyrolysis 314
Sulfur, relative isotopic abundance 393
Sumac 25

Tandem accelerator 469–70
Tandem mass spectrometry 60–3, 103
Tapestries 440–2
Tar, see Birch bark tar
Tempera 238
 see also Egg
Terpenoid resins 13–14
 direct mass spectrometry
 case studies 88–94
 reference samples
 dehydroabietic acid 84–7
 oleanolic acid 80–4
diterpenoid 14–16, 145–50, 333–9
gas chromatography-mass spectrometry 229–30
pyrolysis 330–3
 di- and triterpenoids 333–9
 trimethylsilylation 341–2
solid phase microextraction 271–3
 archaeological samples 286–9, 291–7
triterpenoid
 ageing 136–7
case studies 88–94
 graphite assisted laser desorption ionisation-MS 133–8
Tetramethylammonium hydroxide (TMAH) 305, 313, 340
Textiles, see Fibres
Thermal degradation, synthetic polymers 346–8
Thermally-assisted hydrolysis and methylation 337–40
 see also Derivatisation
THM gas chromatography
 mass spectrometry 333, 337–40
Tigas oil 156, 157
Time of flight mass analyser 5, 56–7
 see also Secondary ion mass spectrometry
Total lipid extracts (TLE) 192–3
Tragacanth 21
Transmethylation 308–10
 see also Derivatisation
Triacylglycerols 106, 108, 125, 124–5
 Japan wax 110–14
Triglycerides 6
Trimethylammonium hydroxide (TFTMTH) 340
Trimethylchlorosilane 342
Trimethylsilylation 217
 lipids 194, 195
 proteins 246–7
 resins 222–3, 313–14, 341–2
N, O-bis(trimethylsilyl) trifluoroacetamide 341
Tripalmitin 110–14
Triple quadrupole mass analyser 61
Tristearin 108
Triterpenoid resins 15, 16–17
 ageing 136–7
 direct mass spectrometry 88–94
 fragmentation 80–8
 graphite assisted laser desorption ionisation 133–8
 oxidation 16–17
 pyrolysis 333–9
Triterpines 133–8
Trypsin 172, 174
Tung oil 7, 152
Turin Shroud 476
Turmeric 25, 377
Turpentine 13, 333–5
Tyrian Purple 380–1
Unguentaria 203–5
Unzipping 347
Urate salts 453
Ursane 332
Valery, Paul 119, 120
Van der Weyden 446
Varnishes 327–30
direct temperature resolved mass spectrometry 87–8, 93
gas chromatography mass spectrometry 229–32
synthetic 342–5
transition temperature 26
see also Shellac; Terpenoid resins
Vat dyes 367
Vegetable oils 6–9, 99–100, 114–15, 192
distinguishing from animal fats 197
fatty acid profiles 197
graphite-assisted laser desorption/ionisation mass spectrometry 152
in lamp residues 201–3
see also Lipids
Venice turpentine 13, 333–5
Verdigris 447–9, 448
Vernice liquida 328
Vinylite 343
Vinyl paints 351–4
Vinyl polymers 27
‘Virgin and Child’ 185
Vitruvius 3
Volatileisation, see Derivatisation
Wall paintings 244
Walnut galls 25
Waxes 4, 10, 10–12, 97–8
gas chromatography mass spectrometry 200
graphite assisted laser desorption ionisation mass spectrometry 150–2
in sculptures 117–22
see also Beeswax; Lipids
Weld 22, 24
Whey 179
White varnish 329
Wien filter 464–5
Wiley Registry of Mass Spectral Data 67
Woad 23
Wood
radiometric sample mass 462
secondary ion mass spectrometry 443–5
Wool 6, 440–2
Xylose 314
Yellow dyes 374–80
see also Flavonoid dyes
Young fustic, chemical composition 24
Zonyl 438–40