Index

a
Abrikosov lattice 2
adiabatic approach 114 ff
Ag/LnBaCuO composites 166, 168
Ag/YBaCuO 167
Ag/YBCO composite materials 138
anisotropy 1, 15
 anisotropy parameter \(\gamma \) 6, 80
 \(B_{c2} \) anisotropy 78
armature current 261

b
BCS theory 1, 98
Bean’s model 8, 194
Bi-2212 15
Bi-2223 15, 18
Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_y\) 80
Bragg glass 2, 80, 174
bulk Bi2212 151
bulk YBaCuO/Ag composite materials,
 improved mechanical properties 141
bulk YBCO
 inhomogeneities 120
 visualization of inhomogeneities 125
calcination 46
chemical potential 31, 32, 39
chemistry 24
 defect 26
coherence length 1, 3, 6, 16, 132
contacting 150
cooling modes
 field cooling 105 ff, 192, 194
 zero-field cooling 105 ff, 193, 195 ff
 cracking 110 ff, 180, 183, 186 ff
 critical current density 10, 19, 71, 171, 176, 191
 critical currents from magnetization loops 9
 depairing critical current 3
 intergrain 146
 magnetization measurements 83 ff
 transport measurements 72, 82 ff
 critical field
 lower critical field 3
 thermodynamic critical field 3
 upper critical field 3, 6
critical state 8, 116

crystallization 46
current lead 148, 284
d
Debye temperature 91
defects 39, 47, 56, 159
 interstitial 26
 point 26
 vacancies 26
dislocations 47, 56
doping 24, 83, 129, 132
 chemical 26
 chemistry 133
 extrinsic 24, 27
 intrinsic 24
 Li doped 109
 Li-doped bulk YBCO 176 ff
 Zn doped 109, 185 ff
 Zn-doped YBCO 187
dynamic approach 114 ff
e
Ehrenfest relationship 100
elastic moduli of bulk YBCO
 shear modulus 95
 Young’s modulus 95
elastic moduli of flux line lattice
 bulk (or compression) modulus 92

High Temperature Superconductor Bulk Materials.
Gernot Krabbes, Günter Fuchs, Wolf-Rüdiger Canders, Haro May, and Ryszard Palka
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40383-3
– shear modulus 93
– tensile strength 94, 111 ff, 184
– Young’s modulus 93
Meissner effect 192
Meissner state 191, 192, 201, 205
melt cast process 151
melt texturing techniques 19
melt-texturing techniques 47
– composition control in oxidizing atmosphere for growing (CCOG) 163
– isothermal processing at variable oxygen partial pressure (OCIP) 161
– Melt-Powder-Melt Growth (MPMG) 48
– modified crystallization process (MMCP) 48
– modified melt crystallization 60
– oxygen-controlled melt growth process (OCMG) 161
– \(p(O_2) \) 161
– post-growth annealing of Ln123 161
– Quench-Melt-Growth (QMG) 48
microcracking 15
microcracks 92
microstructure 53, 56
mixed state 7, 191, 194, 201
morphology 53
mosaic structure 59, 146
multi-seeded melt growth 144

\(n \)
Nd-based HTSC 175
Nd123 157
nomenclature 3
numerical calculations
– inverse field problem 120 ff
– \(j_c \) distribution 121, 124 ff
– local critical current density field profiles 119 ff
– stress distribution 180 ff
numerical calculations – forces
– perfectly trapped flux model 250 ff
– vector-controlled model 253 ff

\(\rho \)
ohmic loss 6
order parameter 96 ff
ordering 159
oxygen 35
– chemical potential 36, 38
– ordering 38
– stoichiometry 26, 36, 37
oxygen partial pressure 63

\(p \)
pairing mechanism
– \(d \) wave 97
– \(d \)-wave pairing 2
– \(s \) wave 97 ff
– \(s \)-wave pairing 2
pancake vortices 2, 15, 80
paraffin, imbedding in 152
particle inclusions 54
– size of 56
peak effect 68, 171
– bulk HTSC 175 ff
– field-induced pins 175 ff
– peak field \(B_p \) 173 ff
– single crystals 172 ff
penetration depth 4
penetration field 116, 117, 195
peritectic temperature 50, 130, 148
perovskite 23, 33
phase diagram 31 ff
– EuBaCuO 34
– GdBaCuO 34
– LaBaCuO 34
– NdBaCuO 34, 156
– \(p(O_2) \) 36, 37, 41, 42, 44, 156
– SmBaCuO 34, 40, 43, 44
– subsolidus 34, 36
– YBaCuO 34, 40, 41
phase separation 38, 158
pinning
– collective pinning 69, 173, 175
– intrinsic pinning 72
– single vortex pinning 69
pinning features
– dislocations 68
– oxygen vacancies 81, 172
– single vortex pinning 83
– stacking faults 67 ff
– twin boundaries 71 ff
– Y-211 precipitates 68 ff
pinning force 7
– collective pinning 17
– elementary pinning force 17
– models 17 ff
– scaling 16 ff, 84 ff, 134, 135
– volume 134
– volume pinning force 8, 16 ff
plastic flux motion 18
\(p(O_2) \) 35
precipitation, sub-micro particles 135
primary crystallization 39, 40, 45, 46, 49
pulsed field
– irreversibility fields 75 ff
– magnetized 117 ff
– magnetizing 115 ff
– rise times 116 ff
– upper critical field 78

q
quantum of magnetic flux 3

r
rare-earth elements 2
reactions 47
– armature 271
– congruent 43
– invariant 32, 42
– univariant 32, 39, 42
refinement of the 211 particles 70 ff
refinement of the Y211 precipitations 83
reluctance motor 145
– armature reaction 270
– dynamics 274
– low inertia 272
– overload capability 271
– torque 274
resin 145
resin impregnation 151
rings 144, 145

s
seed 49, 144
– alternative seeding techniques 165
shaping 143
single crystals 46
Sm123 157
SMB
– air gap 219
– cross stiffness 209
– cryocontainer 234 ff
– cylindrical 236
– cylindrical excitation system 212
– cylindrically shaped flux-collecting system 215
– electromagnetic excitation systems 215 ff
– field cooling 203
– flat magnet arrangement 219
– flat magnet system 217, 218
– flux concentration 214, 220
– flux concentration excitation 220
– flux concentration excitation arrangement 222
– flux concentration system 217
– flux creep 227 ff
– flux-collecting arrangement 221, 241
– flux-collecting excitation system 236, 239, 255
– flux-collecting magnet systems 215
– flywheels 240
– force activation modes 207
– force characteristics 216
– iron collectors 223 ff
– levitation forces 201 ff, 225 ff, 230 ff
– levitational pressure 202, 204 ff
– lift 242 ff
– linear excitation system 211
– linear field excitation systems 214
– linear motion 241 ff
– magnet systems for field excitation 211
– magnetic clutch 237
– maximum field cooling activation 219 ff
– maximum field cooling (MFC) 207 ff, 211, 254
– operational field cooling 207 ff, 220 ff
– operational field cooling with offset 209 ff
– operational field cooling with vertical offset 207 ff
– planar 236
– pole pitch 217, 219, 222 ff
– restoring forces 208, 210
– rotary motion 236 ff
– specific operation conditions 245 ff
– stationary levitation 213, 234 ff
– stiffness 209, 239
– stray field compensation 221
– superconducting motors 238 ff
– transportation systems 242 ff
– turbo machine 236 ff
– zero-field cooling 202, 217
SMB – rotary motion
– dynamics 247 ff
– hysteretic losses 247 ff
– resonance frequency 247 ff
– rotational losses 249
solid solution 26, 34, 35, 42, 43, 157
– Ln1+yBa2–yCu3O7 155
solidification 46
– peritectic 47
Sommerfeld parameter 98
specific heat 96 ff, 98 ff, 114, 116
spinodal 158, 159
sputtering device with SPM 283
stacking fault 58
steel tube 179 ff, 182
– coefficient of thermal expansion 179
– Young’s modulus 180
stoichiometry 25, 38, 42, 159
structure