Contents

Preface XI

1 Fundamentals 1
1.1 Introduction to Superconductivity in High-Temperature Superconductors (HTSCs) 1
1.1.1 Introductory Remarks 1
1.1.2 Internal Nomenclature 3
1.1.3 Critical Currents and Flux Motion in Superconductors 3
1.1.4 Magnetization Curve of a Type II Superconductor 7
1.1.5 Determination of Critical Currents from Magnetization Loops 9
1.1.6 Magnetic Relaxation 11
1.1.7 Electric Field–Current Relation 13
1.1.8 Peculiarities of HTSCs in Comparison to Low-Temperature Superconductors 15
1.1.9 Basic Relations for the Pinning Force and Models for its Calculation 16
1.2 Features of Bulk HTSCs 18
1.2.1 Bulk HTSCs of Large Dimensions 19
1.2.2 Potential of Bulk HTSC for Applications 20
1.3 Solid-State Chemistry and Crystal Structures of HTSCs 22
1.3.1 Crystal Structures and Functionality 22
1.3.2 Chemistry and Doping 24
1.3.3 Intrinsic Doping: Variations of Stoichiometry 25
1.3.4 Defect Chemistry 26
1.3.5 Extrinsic Doping 27

2 Growth and Melt Processing of YBa₂Cu₃O₇ 31
2.1 Physico-Chemistry of RE-Ba-Cu-O Systems 31
2.1.1 Phase Diagrams and Fundamental Thermodynamics 31
2.1.2 Subsolidus Phase Relationships 33
2.1.3 The Influence of Oxygen on Phase Equilibria: the System Y-Ba-Cu-O 35
2.1.4 The Oxygen Nonstoichiometry in 123 phases: YBa₂Cu₃O₇₋ₓ 37
(YBa₂Cu₃O₆+x)
2.1.5 Phase Relationships in Y-Ba-Cu-O in the Solidus and Liquidus Range 39
2.1.6 Phase Relationships and the Liquidus Surface in Systems Ln-Ba-Cu-O (Ln = Nd, Sm, ...) 42
2.1.7 Additional Factors 45
2.2 Preparation of Polycrystalline RE123 Materials 45
2.2.1 Synthesis of HTSC Compounds 45
2.3 Growth of YBa2Cu3O7 Single Crystals 46
2.4 Processing of “Melt-Textured” YBaCuO Bulk Materials 47
2.4.1 Experimental Procedure 47
2.4.2 Mass Flow, Growth Rates, Kinetic and Constitutional Undercooling 50
2.4.3 Developing Microstructures: Morphology, Inclusions, Defects 53
2.5 Modified Melt Crystallization Processes For YBCO 60
2.5.1 Variants of the YBa2Cu3O7–Y2BaCuO5 Melt-Texturing Process 60
2.5.2 Processing Mixtures of Y123 and Yttria 60
2.5.3 Processing in Reduced Oxygen Partial Pressure 63

3 Pinning-Relevant Defects in Bulk YBCO 67

4 Properties of Bulk YBCO 75
4.1 Vortex Matter Phase Diagram of Bulk YBCO 75
4.1.1 Irreversibility Fields 75
4.1.2 Upper Critical Fields 78
4.1.3 Vortex Matter Phase Diagram 79
4.2 Critical Currents and Pinning Force 82
4.2.1 Transport Measurements 82
4.2.2 Magnetization Measurements 83
4.3 Flux Creep 86
4.3.1 Flux Creep in Bulk YBCO 86
4.3.2 Reduction of Flux Creep 87
4.3.3 Pinning Properties from Relaxation Data 89
4.4 Mechanical Properties 91
4.4.1 Basic Relations 91
4.4.2 Mechanical Data for Bulk YBCO 93
4.5 Selected Thermodynamic and Thermal Properties 96
4.5.1 Symmetry of the Order Parameter 96
4.5.2 Specific Heat 98
4.5.3 Thermal Expansion 99
4.5.4 Thermal Conductivity 101

5 Trapped Fields 105
5.1 Low-Temperature Superconductors 105
5.2 Bulk HTSC at 77 K 105
5.3 Trapped Field Data at 77 K 109
5.4 Limitation of Trapped Fields in Bulk YBCO at Lower Temperatures 110
5.4.1 Magnetic Tensile Stress and Cracking 111
5.4.2 Thermomagnetic Instabilities 113
5.5 Magnetizing Superconducting Permanent Magnets by Pulsed Fields 115
5.6 Numerical Calculations of the Local Critical Current Density from Field Profiles 119
5.6.1 Inverse Field Problem: Two-Dimensional Estimation 120
5.6.2 Three-Dimensional Estimation 122
5.7 Visualization of Inhomogeneities in Bulk Superconductors 125

6 Improved YBa$_2$Cu$_3$O$_{7-d}$-Based Bulk Superconductors and Functional Elements 129
6.1 Improved Pinning Properties 129
6.1.1 Chemical Modifications in YBa$_2$Cu$_3$O$_7$ 129
6.1.2 Sub-Micro Particles Included in Bulk YBCO 135
6.1.3 Irradiation Techniques 136
6.2 Improved Mechanical Properties in YBa$_2$Cu$_3$O$_{7-d}$/Ag Composite Materials 138
6.2.1 Fundamentals of the Processing and Growth of YBCO/Ag Composite Materials 138
6.2.2 Processing and Results 140
6.2.3 Properties of Bulk YBaCuO/Ag Composite Materials 141
6.3 Near Net Shape Processing: Large Sized Bulk Superconductors and Functional Elements 142
6.3.1 Finishing and Shaping 143
6.3.2 The Multi-Seed Technique 144
6.3.3 Rings of 123 Bulk Materials 144
6.3.4 Joining of Separate Single Grains 146
6.4 Bulk Materials and Processing Designed for Special Applications 148
6.4.1 Infiltration Technique and Foams 148
6.4.2 Long-Length Conductors and Controlled-Resistance Materials 149
6.4.3 Bi2212 Bulk Materials and Rings 151
6.4.4 Batch Processing of 123 Bulk Materials 151

7 Alternative Systems 155
7.1 Impact of Solid Solutions Ln$_{1+y}$Ba$_{2-y}$Cu$_3$O$_{7-d}$ on Phase Stability and Developing Microstructure 155
7.2 Advanced Processing of Ln123 160
7.2.1 Oxygen Potential Control 160
7.2.2 Oxygen-Controlled Melt Growth Process (OCMG) 161
7.2.3 Isothermal Growth Process at Variable Oxygen Partial Pressure (OCIG) 161
7.2.4 Composition Control in Oxidizing Atmosphere for Growing (CCOG) 163
7.3 Alternative Seeding Techniques 165
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Further LnBa$_2$Cu$_2$O$_y$-Based Materials</td>
<td>165</td>
</tr>
<tr>
<td>7.5</td>
<td>Ag/LnBaCuO Composites with Large Lanthanide Ions</td>
<td>166</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Fundamentals of Processing</td>
<td>166</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Reactions Near the Seed–Melt Interface</td>
<td>167</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Growth and Properties of Ag/LnBaCuO Composites</td>
<td>168</td>
</tr>
<tr>
<td>8</td>
<td>Peak Effect</td>
<td>171</td>
</tr>
<tr>
<td>8.1</td>
<td>Peak Effect (due to Cluster of Oxygen Vacancies) in Single Crystals</td>
<td>172</td>
</tr>
<tr>
<td>8.2</td>
<td>Peak Effect in Bulk HTSC</td>
<td>175</td>
</tr>
<tr>
<td>9</td>
<td>Very High Trapped Fields in YBCO Permanent Magnets</td>
<td>179</td>
</tr>
<tr>
<td>9.1</td>
<td>Bulk YBCO in Steel Tubes</td>
<td>179</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Magnetic Tensile Stress (in Reinforced YBCO Disks)</td>
<td>179</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Trapped Field Measurements</td>
<td>181</td>
</tr>
<tr>
<td>9.2</td>
<td>Resin-Impregnated YBCO</td>
<td>184</td>
</tr>
<tr>
<td>9.3</td>
<td>Trapped Field Data of Steel-reinforced YBCO</td>
<td>185</td>
</tr>
<tr>
<td>9.4</td>
<td>Comparison of Trapped Field Data</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>Engineering Aspects: Field Distribution in Bulk HTSC</td>
<td>191</td>
</tr>
<tr>
<td>10.1</td>
<td>Field Distribution in the Meissner Phase</td>
<td>192</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Field Cooling</td>
<td>192</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Zero-Field Cooling</td>
<td>193</td>
</tr>
<tr>
<td>10.2</td>
<td>Field Distribution in the Mixed State</td>
<td>194</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Field Cooling</td>
<td>194</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Zero-Field Cooling</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>Inherently Stable Superconducting Magnetic Bearings</td>
<td>199</td>
</tr>
<tr>
<td>11.1</td>
<td>Principles of Superconducting Bearings</td>
<td>199</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Introduction to Magnetic Levitation</td>
<td>199</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Attributes of Superconducting Magnetic Bearings with Bulk HTSC</td>
<td>200</td>
</tr>
<tr>
<td>11.2</td>
<td>Forces in Superconducting Bearings</td>
<td>201</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Forces in the Meissner and the Mixed State</td>
<td>201</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Maximum Levitational Pressure in Superconducting Bearings</td>
<td>204</td>
</tr>
<tr>
<td>11.3</td>
<td>Force Activation Modes and Magnet Systems in Superconducting Bearings</td>
<td>207</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Cooling Modes</td>
<td>207</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Operational Field Cooling with an Offset</td>
<td>209</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Maximum Field Cooling Mode</td>
<td>211</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Magnet Systems for Field Excitation in Superconducting Bearings</td>
<td>211</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Force Characteristics</td>
<td>216</td>
</tr>
<tr>
<td>11.4</td>
<td>Optimized Flux Concentration Systems for Operational-Field Cooling (OFCo)</td>
<td>220</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Stray Field Compensation</td>
<td>221</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Dimensional Optimization of System Components</td>
<td>221</td>
</tr>
<tr>
<td>11.5</td>
<td>Parameters Influencing the Forces of Superconducting Bearings</td>
<td>225</td>
</tr>
</tbody>
</table>
11.5.1 Critical Current Density 225
11.5.2 Temperature 226
11.5.3 Flux Creep 227
11.5.4 HTSC Bulk Elements Composed of Multiple Isolated Grains 229
11.5.5 Number of Poles of the Excitation System 232
11.6 Applications of Superconducting Bearings 233
11.6.1 Bearings for Stationary Levitation 234
11.6.2 Bearings for Rotary Motion 236
11.6.3 Bearings for Linear Motion 241
11.7 Specific Operation Conditions 245
11.7.1 Precise Positioning of Horizontal Rotating Axis 245
11.7.2 Bulk HTSCs Cooled Below 77 K 246
11.7.3 Cooling the Excitation System along with the Superconductor 247
11.7.4 Dynamics of Rotating Superconducting Bearings 247
11.8 Numerical Methods 249
11.8.1 Perfectly Trapped Flux Model (2D) 250
11.8.2 Perfectly Trapped Flux Model (3D) 252
11.8.3 Vector-Controlled Model (2D) 253

12 Applications of Bulk HTSCs in Electromagnetic Energy Converters 259
12.1 Design Principles 259
12.2 Basic Demonstrator for Application in Electrical Machines – Hysteresis or Induction Machines 261
12.3 Trapped-Field Machine Designs 263
12.4 Stator-Excited Machine Designs with Superconducting Shields – The Reluctance Motor with Bulk HTSC 269
12.5 Machines with Bulk HTSCs – Status and Perspectives 273

13 Applications in Magnet Technologies and Power Supplies 279
13.1 Superconducting Permanent Magnets with Extremely High Magnetic Fields 279
13.1.1 Laboratory Magnets 279
13.1.2 Magnetic Separators 280
13.1.3 Sputtering Device 283
13.1.4 Superconducting Wiggles and Undulators 284
13.2 High-Temperature Superconducting Current Leads 284
13.3 Superconducting Fault Current Limiters 285
13.3.1 Inductive Fault Current Limiters 286
13.3.2 Resistive Superconducting Fault Current Limiters 287
13.3.3 Status of High AC Power SFCL Concepts 288
13.4 High-Temperature Superconducting Magnetic Shields 290

List of Abbreviations 293

Index 295