Contents

About the Authors xiii
Foreword by Lawrence B. Evans xv
Foreword by Steven R. Cope xvii
Preface xix
Acknowledgments xxiii
Scope of Textbook xxv
Software Selection and Copyright Notice xxvii

1 Characterization and Physical and Thermodynamic Properties of Oil Fractions 1

1.1 Crude Assay 1
1.1.1 Bulk Properties 2
1.1.2 Fractional Properties 6
1.1.3 Interconversion of Distillation Curves 7
1.2 Boiling Point-Based Hypothetical or Pseudocomponent Generation 8
1.3 Workshop 1.1 – Interconvert Distillation Curves 13
1.4 Workshop 1.2 – Extrapolate an Incomplete Distillation Curve 13
1.5 Workshop 1.3 – Calculate MeABP of a Given Assay 13
1.6 Workshop 1.4 – Represent an Oil Fraction by the Old Oil Manager in Aspen HYSYS Petroleum Refining 16
1.7 Workshop 1.5 – Represent an Oil Fraction by the New Petroleum Assay Manager in Aspen HYSYS Petroleum Refining 25
1.8 Workshop 1.6 – Conversion from the Oil Manager to Petroleum Assay Manager and Improvements of the Petroleum Assay Manager over the Oil Manager 32
1.9 Property Requirements for Refinery Process Models 33
1.10 Physical Properties 36
1.10.1 Estimating Minimal Physical Properties for Pseudocomponents 36
1.10.2 Molecular Weight 37
1.10.3 Critical Properties 38
1.10.4 Liquid Density 40
1.10.5 Ideal Gas Heat Capacity 42
1.10.6 Other Derived Physical Properties 43
1.11 Process Thermodynamics 45
1.11.1 Process Thermodynamics 47
1.11.2 Mixed or Activity Coefficient-Based Approach 47
1.11.3 Equation-of-State Approach 49
1.12 Miscellaneous Physical Properties for Refinery Modeling 50
1.12.1 Two Approaches for Estimating Fuel Properties 51
1.12.2 Flash Point 52
1.12.3 Freeze Point 52
1.12.4 PNA Composition 53
1.13 Conclusion 54
Nomenclature 55
Bibliography 56

2 Atmospheric or Crude Distillation Unit (CDU) 59
2.1 Introduction 59
2.2 Scope of the Chapter 60
2.3 Process Overview 60
2.3.1 Desalting 61
2.3.2 Preheat Train and Heat Recovery 62
2.3.3 Atmospheric Distillation 62
2.4 Model Development 65
2.4.1 MESH Equations 66
2.4.2 Overall Column Efficiency and Murphree Stage Efficiency 66
2.4.3 Recommendation for Correctly Handling the Efficiency 68
2.4.4 Inside-Out Algorithm for Distillation Column Calculation
Convergence 69
2.5 Feed Characterization 72
2.6 Data Requirements and Validation 73
2.7 A Representative Atmospheric Distillation Unit 76
2.8 Building the Model in Aspen HYSYS Petroleum Refining 77
2.8.1 Entering the Crude Information 78
2.8.2 Selection of a Thermodynamic Model 84
2.8.3 Crude Charge and Prefractionation Units 87
2.8.4 Atmospheric Distillation Column – Initial 88
2.8.5 Atmospheric Distillation Column – Side Strippers 95
2.8.6 Atmospheric Distillation Column – Pumparounds 98
2.8.7 Atmospheric Distillation Column – Adding Custom Stream
Properties 101
2.8.8 Post-Convergence 104
2.9 Results 105
2.10 Model Applications to Process Optimization 109
2.10.1 Improve the 5% Distillation Point for an Individual Cut 109
2.10.2 Change Yield of a Given Cut 109
2.10.3 Workshop 2.1 – Perform Case Studies to Quantify the Effects of
Stripping Steam Rate and Product Draw Rate 111
2.11 Workshop 2.2 – Rebuild Model Using “Backblending” Procedure 114
2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager 115
2.11.2 Define a New Blend of the Backblended Crude Feed 116
2.11.3 Build the CDU Model Based on the Backblended Feed 120
2.11.4 Converging Column Model 120
2.11.5 Comparison of Results 123
2.12 Workshop 2.3 – Investigate Changes in Product Profiles with New Product Demands 126
2.12.1 Update Column Specifications 126
2.12.2 Vary Draw Rate of LGO 127
2.13 Workshop 2.4 – Investigate the Effects of Process Variables on Product Qualities 129
2.14 Workshop 2.5 – Application of Column Internal Tools (Column Hydraulic Analysis) 131
2.15 Workshop 2.6 – Application of the Petroleum Distillation Column 140
2.16 Conclusions 144
Nomenclature 145
Bibliography 145

3 Vacuum Distillation Unit 147
3.1 Process Description 147
3.2 Plant Data Reconciliation 149
3.2.1 Required Data 149
3.2.2 Representation of the Atmospheric Residue 149
3.2.3 Makeup of Gas Streams 152
3.3 Model Implementation 154
3.3.1 Plant Data and Modeling Approaches 155
3.3.2 Workshop 3.1 – Build the Simplified VDU Model 157
3.3.3 Workshop 3.2 – Build the Rigorous Model from a Simplified Model 165
3.4 Model Application – VDU Deep-Cut Operation 172
3.5 Workshop 3.3 – Simulation of the VDU Deep-Cut Operation 176
Bibliography 180

4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process 183
4.1 Introduction 184
4.2 Process Description 185
4.2.1 Riser–Regenerator Complex 185
4.2.2 Downstream Fractionation 187
4.3 Process Chemistry 188
4.4 Literature Review 190
4.4.1 Kinetic Models 190
4.4.2 Unit-Level Models 193
4.5 Aspen HYSYS Petroleum Refining FCC Model 195
4.5.1 Slip Factor and Average Voidage 196
4.5.2 21-Lump Kinetic Model 197
4.5.3 Catalyst Deactivation 198
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Process Chemistry</td>
<td>311</td>
</tr>
<tr>
<td>5.4</td>
<td>Literature Review</td>
<td>313</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Kinetic Models and Networks</td>
<td>314</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Unit-Level Models</td>
<td>317</td>
</tr>
<tr>
<td>5.5</td>
<td>Aspen HYSYS Petroleum Refining Catalytic Reformer Model</td>
<td>319</td>
</tr>
<tr>
<td>5.6</td>
<td>Thermophysical Properties</td>
<td>323</td>
</tr>
<tr>
<td>5.7</td>
<td>Fractionation System</td>
<td>323</td>
</tr>
<tr>
<td>5.8</td>
<td>Feed Characterization</td>
<td>324</td>
</tr>
<tr>
<td>5.9</td>
<td>Model Implementation</td>
<td>328</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Data Consistency</td>
<td>329</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Feed Characterization</td>
<td>330</td>
</tr>
<tr>
<td>5.9.3</td>
<td>Calibration</td>
<td>330</td>
</tr>
<tr>
<td>5.10</td>
<td>Overall Modeling Strategy</td>
<td>333</td>
</tr>
<tr>
<td>5.11</td>
<td>Results</td>
<td>335</td>
</tr>
<tr>
<td>5.12</td>
<td>Applications</td>
<td>340</td>
</tr>
<tr>
<td>5.12.1</td>
<td>Effect of Reactor Temperature on Process Yields</td>
<td>341</td>
</tr>
<tr>
<td>5.12.2</td>
<td>Effect of Feed Rate on Process Yields</td>
<td>344</td>
</tr>
<tr>
<td>5.12.3</td>
<td>Combined Effects on Process Yields</td>
<td>345</td>
</tr>
<tr>
<td>5.12.4</td>
<td>Effect of Feedstock Quality on Process Yields</td>
<td>346</td>
</tr>
<tr>
<td>5.12.5</td>
<td>Chemical Feedstock Production</td>
<td>347</td>
</tr>
<tr>
<td>5.12.6</td>
<td>Energy Utilization and Process Performance</td>
<td>349</td>
</tr>
<tr>
<td>5.13</td>
<td>Refinery Production Planning</td>
<td>350</td>
</tr>
<tr>
<td>5.14</td>
<td>Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining</td>
<td>354</td>
</tr>
<tr>
<td>5.14.1</td>
<td>Introduction</td>
<td>354</td>
</tr>
<tr>
<td>5.14.2</td>
<td>Process Overview and Relevant Data</td>
<td>354</td>
</tr>
<tr>
<td>5.14.3</td>
<td>Aspen HYSYS and Initial Component and Thermodynamic Setup</td>
<td>356</td>
</tr>
<tr>
<td>5.14.4</td>
<td>Basic Reformer Configuration</td>
<td>358</td>
</tr>
<tr>
<td>5.14.5</td>
<td>Input Feedstock and Process Variables</td>
<td>362</td>
</tr>
<tr>
<td>5.14.6</td>
<td>Solver Parameters and Running the Initial Model</td>
<td>368</td>
</tr>
<tr>
<td>5.14.7</td>
<td>Viewing Model Results</td>
<td>370</td>
</tr>
<tr>
<td>5.14.8</td>
<td>Updating Results with Molecular Composition Information</td>
<td>372</td>
</tr>
<tr>
<td>5.15</td>
<td>Workshop 5.2. – Model Calibration</td>
<td>376</td>
</tr>
<tr>
<td>5.16</td>
<td>Workshop 5.3 – Build a Downstream Fractionation System</td>
<td>387</td>
</tr>
<tr>
<td>5.17</td>
<td>Workshop 5.4. – Case Study to Vary RON and Product Distribution Profile</td>
<td>395</td>
</tr>
<tr>
<td>5.18</td>
<td>Conclusion</td>
<td>400</td>
</tr>
</tbody>
</table>

6 Predictive Modeling of the Hydroprocessing Units 405

6.1 Introduction 406

6.2 Aspen HYSYS Petroleum Refining HCR Modeling Tool 411

6.3 Process Description 416

6.3.1 MP HCR Process 416

6.3.2 HP HCR Process 419
Contents

7.1.2 Feed Components and Alkylation Kinetics 518
7.1.3 Workshop 7.1 – Hydrofluoric Acid Alkylation Process Simulation 519
7.2 Delayed Coking 528
7.2.1 Process Description 528
7.2.2 Feed Characterization, Kinetic Lumps, and Coking Reaction Kinetics 529
7.2.3 Workshop 7.2 – Simulation and Calibration of a Delayed Coking Process 530
7.2.4 Workshop 7.3 – Simplified Model of Delayed Coker by Petroleum Shift Reactor for Production Planning Applications 542
7.3 Refinery-Wide Process Simulation 548
7.3.1 Refinery-Wide Process Model: A Key to Integrating Process Modeling and Production Planning 548
7.3.2 An Example of a Refinery-Wide Process Simulation Model 549
7.3.3 Tools for Developing Refinery-Wide Process Models 551
7.3.4 Deployment and Applications of the Refinery-Wide Process Models for Process Engineering and Production Planning 551
7.4 Conclusions 553
Bibliography 554

List of Computer Files 555

Index 559