Contents

Foreword to the Second Edition XIII

Introduction 1
What is Biophysical Chemistry? – An Example from Drug Screening 1

Part One Basic Methods in Biophysical Chemistry 11

1 Basic Optical Principles 13
1.1 Introduction 13
1.2 What Does the Electronic Structure of Molecules Look Like?
 Orbitals, Wave Functions and Bonding Interactions 15
1.3 How Does Light Interact with Molecules? Transition Densities
 and the Transition Dipole Moment 20
1.4 Absorption Spectra of Molecules in Liquid Environments.
 Vibrational Excitation and the Franck–Condon Principle 24
1.5 What Happens After Molecules have Absorbed Light? Fluorescence,
 Nonradiative Transitions and the Triplet State 27
1.6 Quantitative Description of all Processes: Quantum Efficiencies,
 Kinetics of Excited State Populations and the Jablonski Diagram 33
Problems 38
Bibliography 39

2 Optical Properties of Biomolecules 41
2.1 Introduction 41
2.2 Experimental Determination of Absorption and Fluorescence
 Spectra 41
2.3 Optical Properties of Proteins and DNA 45
2.3.1 Intrinsic Absorption and Fluorescence of Amino Acids,
 Peptides and Proteins 45
2.3.2 Intrinsic Absorption of Nucleotides, DNA and RNA 47
2.4 Optical Properties of Important Cofactors 49
2.4.1	Haem	49
2.4.2	Nicotinamide Adenine Dinucleotides	52
2.4.3	Flavins	53
2.4.4	Chlorophylls	54
2.4.5	Carotenoids	56
	Problems	58
	Bibliography	58

3 Basic Fluorescence Techniques 61

3.1 Introduction 61

3.2 Fluorescent Labelling and Linking Techniques 61

3.2.1 Primary Amino Group Reactive Labels 63

3.2.2 Thiol Group Reactive Labels 64

3.2.3 Avidin–Biotin Techniques 65

3.2.4 His-Tag 66

3.2.5 Thiolinkers and Gold Surfaces 67

3.2.6 Fluorescent Proteins 67

3.3 Fluorescence Detection Techniques 68

3.4 Fluorescence Polarization Anisotropy 70

3.4.1 Principles and Theoretical Background 70

3.4.2 Application Example: Receptor–Ligand Interactions 78

3.4.3 Application Example: Estimation of Molecular Mass 79

3.4.4 Application Example: Enzyme Function and Kinetics 80

3.4.5 Application Example: Enzyme Inhibition, Activation and Regulation 83

3.5 Förster Resonance Energy Transfer 84

3.5.1 Principles and Theoretical Background 84

3.5.2 Application Examples 90

3.6 Fluorescence Kinetics 93

3.7 Fluorescence Recovery after Photobleaching 98

3.8 Biochemiluminescence 99

| | Problems | 100 |
| | Bibliography | 103 |

4 Chiroptical and Scattering Methods 105

4.1 Chiroptical Methods 105

4.1.1 Circular Dichroism (CD) 105

4.1.2 Optical Rotatory Dispersion 107

4.2 Light Scattering 109

4.2.1 Scattering of Light at Molecules Smaller than the Optical Wavelength 110

4.2.2 Scattering of Light at Particles Equal to or Larger than the Optical Wavelength 112

4.2.3 Dynamic Light Scattering 115

4.3 Vibrational Spectra of Biomolecules 115
5 Magnetic Resonance Techniques 121
5.1 Nuclear Magnetic Resonance of Biomolecules 121
5.1.1 Principles 121
5.1.2 Theoretical Framework 123
5.1.3 Primary Information Deduced from NMR Spectra 125
5.1.4 Pulsed NMR Spectroscopy 126
5.1.5 Two-Dimensional NMR Spectroscopy 130
5.1.6 Correlated Spectroscopy (COSY) 130
5.1.7 Nuclear Overhauser Effect and NOESY Spectra 135
5.1.8 NMR-Based Structural Analysis of Biomolecules 138
5.2 Electron Paramagnetic Resonance 141
Problems 145
Bibliography 147

6 Mass Spectrometry 149
6.1 Introduction 149
6.2 MALDI-TOF 149
6.2.1 Ionization 149
6.2.2 Analyser 152
6.2.3 Detector 153
6.2.4 Signals and Signal Improvements 154
6.3 ESI-MS 156
6.3.1 Ionization 156
6.3.2 Analyser and Detection 158
6.3.3 Signals and Signal Improvements 161
6.4 Structural and Sequence Analysis Using Mass Spectrometry 163
Problems 164
Bibliography 165

Part Two Advanced Methods in Biophysical Chemistry 167

7 Fluorescence Microscopy 169
7.1 Introduction 169
7.2 Conventional Fluorescence Microscopy 169
7.2.1 Confocal Fluorescence Microscopy 169
7.2.2 Laser Scanning Microscopy 174
7.2.3 Wide-Field Fluorescence Microscopy 174
7.3 Total Internal Reflection Fluorescence Microscopy 176
7.4 Light-Sheet Microscopy 178
Problems 180
Bibliography 181
8 Super-Resolution Fluorescence Microscopy 183
8.1 Stimulated Emission Depletion (STED) Microscopy 184
8.2 Photoactivated Localization Microscopy (PALM) and
Stochastic Optical Reconstruction Microscopy (STORM) 187
8.3 3D Super-Resolution Fluorescence Microscopy 190
8.3.1 3D-STED 190
8.3.2 3D-PALM/STORM 191
8.4 Imaging of Live Cells 191
8.4.1 Observation Duration 192
8.4.2 Irradiation Intensity 193
8.4.3 Imaging Depths 194
8.4.4 Labelling Conditions 194
8.5 Multicolour Super-Resolution Fluorescence Microscopy 195
8.6 Structured Illumination Microscopy 195
8.7 SOFI 197
8.8 Final Comparison 199
Problems 201
Bibliography 202

9 Single-Biomolecule Techniques 203
9.1 Introduction 203
9.2 Optical Single-Molecule Detection 203
9.2.1 Application Example 1: Observation of the Rotation of Single
ATPase Complexes 206
9.2.2 Application Example 2: Single-Molecule Observation
of the Elementary Steps of Biomolecular Motors 209
9.3 Fluorescence Correlation Spectroscopy 213
9.3.1 Autocorrelation Analysis and Observable Key Parameters 214
9.3.2 Autocorrelation Analysis, Mathematical Background 220
9.3.3 Quantitative Determination of Important Parameters
from Autocorrelation Curves 221
9.3.3.1 Relationship Between Volume and Molecular Mass of a
Protein and its Diffusion Time 222
9.3.3.2 Two-Dimensional Diffusion and Active Transport 222
9.3.3.3 Mixtures of Fluorescing Particles 223
9.3.4 Further Correlation Effects 224
9.3.5 Cross-Correlation Analysis 226
9.4 Optical Tweezers 230
9.4.1 Theoretical Background 230
9.4.2 Application Examples 236
9.4.2.1 Unfolding of RNA and DNA Hairpins 236
9.4.2.2 RNA Polymerase 238
9.4.2.3 DNA-Polymerase 239
9.5 Atomic Force Microscopy of Biomolecules 240
9.5.1 Principle of an AFM 241
9.5.2 Application Examples 242
9.5.2.1 Unfolding of DNA Hairpins 242
9.5.2.2 Receptor–Ligand Binding Forces 244
9.5.2.3 Protein Unfolding 244
9.6 Patch Clamping 245
9.6.1 Ion Channels 245
9.6.2 Patch Clamp Configurations 246
Problems 250
Bibliography 254

10 Ultrafast- and Nonlinear Spectroscopy 257
10.1 Introduction 257
10.2 Nonlinear Microscopy and Spectroscopy 258
10.2.1 Multiphoton Excitation 258
10.2.2 Advantages and Disadvantages of Two-Photon Excitation in Fluorescence Microscopy 259
10.2.3 How are Nonlinear Optical Signals Observed From Biological Samples? 262
10.2.4 Further Distinct Properties and Advantages of Two-Photon Excitation 263
10.2.5 Wavemixing and Other Nonlinear Optical Techniques 266
10.3 Ultrafast Spectroscopy 270
10.3.1 Pump–Probe Spectroscopy 270
10.3.2 Application Example: Ultrafast Light-Harvesting and Energy Conversion in Photosynthesis 274
10.3.2.1 Chlorophyll b → Chlorophyll a → Reaction Centre Energy Flow 276
10.3.2.2 Carotenoid → Chlorophyll Energy Flow 278
Problems 280
Bibliography 282

11 DNA Sequencing and Next-Generation Sequencing Methods 285
11.1 Sanger Method 285
11.2 Next-Generation Sequencing Methods 287
11.2.1 Dye Sequencing (Approach I) 289
11.2.2 Sequencing by Ligation, Pyrosequencing and Ion Semiconductor Sequencing (Approaches II to IV) 292
11.2.2.1 Emulsion PCR 292
11.2.2.2 Sequencing by Ligation (Approach II) 294
11.2.2.3 Pyrosequencing (Approach III) 296
11.2.2.4 Ion Semiconductor Sequencing (Approach IV) 297
11.2.3 Single-Molecule Real-Time Sequencing (Approach V) 299
Problems 300
Bibliography 301

12 Special Techniques 303
12.1 Introduction 303